Cargando…

A fluid mechanic’s analysis of the teacup singularity

The mechanism for singularity formation in an inviscid wall-bounded fluid flow is investigated. The incompressible Euler equations are numerically simulated in a cylindrical container. The flow is axisymmetric with the swirl. The simulations reproduce and corroborate aspects of prior studies reporti...

Descripción completa

Detalles Bibliográficos
Autor principal: Barkley, Dwight
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482198/
https://www.ncbi.nlm.nih.gov/pubmed/32922159
http://dx.doi.org/10.1098/rspa.2020.0348
Descripción
Sumario:The mechanism for singularity formation in an inviscid wall-bounded fluid flow is investigated. The incompressible Euler equations are numerically simulated in a cylindrical container. The flow is axisymmetric with the swirl. The simulations reproduce and corroborate aspects of prior studies reporting strong evidence for a finite-time singularity. The analysis here focuses on the interplay between inertia and pressure, rather than on vorticity. The linearity of the pressure Poisson equation is exploited to decompose the pressure field into independent contributions arising from the meridional flow and from the swirl, and enforcing incompressibility and enforcing flow confinement. The key pressure field driving the blowup of velocity gradients is that confining the fluid within the cylinder walls. A model is presented based on a primitive-variables formulation of the Euler equations on the cylinder wall, with closure coming from how pressure is determined from velocity. The model captures key features in the mechanics of the blowup scenario.