Cargando…

Droplet Growth Model for Dropwise Condensation on Concave Hydrophobic Surfaces

[Image: see text] In this paper, mathematical models for predicting the droplet growth and droplet distribution of dropwise condensation on hydrophobic concave surface are developed and a theoretical analysis of the results of the model simulation is made. Under the assumptions of the Cassie–Baxter...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tongqian, Zhang, Zengzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482238/
https://www.ncbi.nlm.nih.gov/pubmed/32923815
http://dx.doi.org/10.1021/acsomega.0c03187
Descripción
Sumario:[Image: see text] In this paper, mathematical models for predicting the droplet growth and droplet distribution of dropwise condensation on hydrophobic concave surface are developed and a theoretical analysis of the results of the model simulation is made. Under the assumptions of the Cassie–Baxter wetting mode and the consideration of noncondensable gases, the droplet growth model is not only established by heat transfer through a single droplet but also considered the thermal conductive resistance of the surface promoting layer. In addition, a droplet distribution model has been built based on the population balance theory. According to the calculation, the main thermal resistance in the droplet growth process is the conductive resistance inside the droplet. With the increase of contact angle, the above-mentioned thermal resistance increases; thus, the higher the hydrophobicity is, the slower the droplet growth and the less the droplet density are. Besides, the lower the temperature of the condensing surface is, the faster the droplets grow and the less the droplet density is. The models provide a mathematical tool for predicting the droplet radius at the initial stage of dewing on the concave surface and contribute to the design of functional surfaces in the field of water harvesting.