Cargando…
Physical Experiment and Numerical Simulation of the Depressurization Rate for Coalbed Methane Production
[Image: see text] The influence of the depressurization rate on coalbed methane desorption and percolation was studied using physical experiment and numerical simulation. First, low-field nuclear magnetic resonance technology provided a new approach to conduct desorption experiments with different d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482415/ https://www.ncbi.nlm.nih.gov/pubmed/32923826 http://dx.doi.org/10.1021/acsomega.0c03439 |
_version_ | 1783580786056757248 |
---|---|
author | Quan, Fangkai Wei, Chongtao Feng, Shuailong Hu, Yunbing |
author_facet | Quan, Fangkai Wei, Chongtao Feng, Shuailong Hu, Yunbing |
author_sort | Quan, Fangkai |
collection | PubMed |
description | [Image: see text] The influence of the depressurization rate on coalbed methane desorption and percolation was studied using physical experiment and numerical simulation. First, low-field nuclear magnetic resonance technology provided a new approach to conduct desorption experiments with different depressurization schemes and obtain the compressibility (C(f)) of coal samples. Then, the productivity calculation of different depressurization schemes was carried out via numerical simulation. The results showed that the first-slow-then-fast (FSTF) depressurization scheme had the highest desorption efficiency (94%), followed by one-stop desorption (85%), first-fast-then-slow desorption (79%), and uniform depressurization desorption (61%). T(2) cutoff values and the corresponding compressibility were obtained by the saturation–centrifugation method and spectral morphology method, and a high-precision permeability expression for dynamic evaluation of numerical simulation was established by the historical production data fitting approach. Through numerical simulation, high production efficiency can be achieved using depressurization rates of medium (15 kPa/d) and FSTF schemes (8 & 50 kPa/d), and depressurization funnel expansion in the single-phase water flow stage plays a decisive role in stable and high-yield production in the later stage. Thus, the FSTF pressure reduction strategy could be advocated to promote gas production. Slow depressurization should be applied in ineffective desorption and the slow desorption stage for saturated coal seam or single-phase flow stage for undersaturated coal seam, given the higher single-phase water permeability. During the rapid and sensitive desorption stage, rapid depressurization is recommended because of large desorption capacity and low water phase permeability. This paper provides a possibility for the optimization of coalbed methane field production management. |
format | Online Article Text |
id | pubmed-7482415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74824152020-09-11 Physical Experiment and Numerical Simulation of the Depressurization Rate for Coalbed Methane Production Quan, Fangkai Wei, Chongtao Feng, Shuailong Hu, Yunbing ACS Omega [Image: see text] The influence of the depressurization rate on coalbed methane desorption and percolation was studied using physical experiment and numerical simulation. First, low-field nuclear magnetic resonance technology provided a new approach to conduct desorption experiments with different depressurization schemes and obtain the compressibility (C(f)) of coal samples. Then, the productivity calculation of different depressurization schemes was carried out via numerical simulation. The results showed that the first-slow-then-fast (FSTF) depressurization scheme had the highest desorption efficiency (94%), followed by one-stop desorption (85%), first-fast-then-slow desorption (79%), and uniform depressurization desorption (61%). T(2) cutoff values and the corresponding compressibility were obtained by the saturation–centrifugation method and spectral morphology method, and a high-precision permeability expression for dynamic evaluation of numerical simulation was established by the historical production data fitting approach. Through numerical simulation, high production efficiency can be achieved using depressurization rates of medium (15 kPa/d) and FSTF schemes (8 & 50 kPa/d), and depressurization funnel expansion in the single-phase water flow stage plays a decisive role in stable and high-yield production in the later stage. Thus, the FSTF pressure reduction strategy could be advocated to promote gas production. Slow depressurization should be applied in ineffective desorption and the slow desorption stage for saturated coal seam or single-phase flow stage for undersaturated coal seam, given the higher single-phase water permeability. During the rapid and sensitive desorption stage, rapid depressurization is recommended because of large desorption capacity and low water phase permeability. This paper provides a possibility for the optimization of coalbed methane field production management. American Chemical Society 2020-08-24 /pmc/articles/PMC7482415/ /pubmed/32923826 http://dx.doi.org/10.1021/acsomega.0c03439 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Quan, Fangkai Wei, Chongtao Feng, Shuailong Hu, Yunbing Physical Experiment and Numerical Simulation of the Depressurization Rate for Coalbed Methane Production |
title | Physical Experiment and Numerical Simulation of the
Depressurization Rate for Coalbed Methane Production |
title_full | Physical Experiment and Numerical Simulation of the
Depressurization Rate for Coalbed Methane Production |
title_fullStr | Physical Experiment and Numerical Simulation of the
Depressurization Rate for Coalbed Methane Production |
title_full_unstemmed | Physical Experiment and Numerical Simulation of the
Depressurization Rate for Coalbed Methane Production |
title_short | Physical Experiment and Numerical Simulation of the
Depressurization Rate for Coalbed Methane Production |
title_sort | physical experiment and numerical simulation of the
depressurization rate for coalbed methane production |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482415/ https://www.ncbi.nlm.nih.gov/pubmed/32923826 http://dx.doi.org/10.1021/acsomega.0c03439 |
work_keys_str_mv | AT quanfangkai physicalexperimentandnumericalsimulationofthedepressurizationrateforcoalbedmethaneproduction AT weichongtao physicalexperimentandnumericalsimulationofthedepressurizationrateforcoalbedmethaneproduction AT fengshuailong physicalexperimentandnumericalsimulationofthedepressurizationrateforcoalbedmethaneproduction AT huyunbing physicalexperimentandnumericalsimulationofthedepressurizationrateforcoalbedmethaneproduction |