Cargando…
Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for response to pathogens
Autophagy is a homeostatic process with multiple functions in mammalian cells. Here we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted TFEB’s nuclear translo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482486/ https://www.ncbi.nlm.nih.gov/pubmed/32753672 http://dx.doi.org/10.1038/s41556-020-0549-1 |
_version_ | 1783580796594946048 |
---|---|
author | Kumar, Suresh Jain, Ashish Choi, Seong Won da Silva, Gustavo Peixoto Duarte Allers, Lee Mudd, Michal H. Peters, Ryan Scott Anonsen, Jan Haug Rusten, Tor-Erik Lazarou, Michael Deretic, Vojo |
author_facet | Kumar, Suresh Jain, Ashish Choi, Seong Won da Silva, Gustavo Peixoto Duarte Allers, Lee Mudd, Michal H. Peters, Ryan Scott Anonsen, Jan Haug Rusten, Tor-Erik Lazarou, Michael Deretic, Vojo |
author_sort | Kumar, Suresh |
collection | PubMed |
description | Autophagy is a homeostatic process with multiple functions in mammalian cells. Here we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted TFEB’s nuclear translocation. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected global transcriptional response to starvation and down-regulated subsets of TFEB targets. IRGM and GABARAPs countered mTOR’s action as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB ensuring coordinated activation of the two systems that eventually merge during autophagy. |
format | Online Article Text |
id | pubmed-7482486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-74824862021-02-03 Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for response to pathogens Kumar, Suresh Jain, Ashish Choi, Seong Won da Silva, Gustavo Peixoto Duarte Allers, Lee Mudd, Michal H. Peters, Ryan Scott Anonsen, Jan Haug Rusten, Tor-Erik Lazarou, Michael Deretic, Vojo Nat Cell Biol Article Autophagy is a homeostatic process with multiple functions in mammalian cells. Here we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted TFEB’s nuclear translocation. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected global transcriptional response to starvation and down-regulated subsets of TFEB targets. IRGM and GABARAPs countered mTOR’s action as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB ensuring coordinated activation of the two systems that eventually merge during autophagy. 2020-08-03 2020-08 /pmc/articles/PMC7482486/ /pubmed/32753672 http://dx.doi.org/10.1038/s41556-020-0549-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Kumar, Suresh Jain, Ashish Choi, Seong Won da Silva, Gustavo Peixoto Duarte Allers, Lee Mudd, Michal H. Peters, Ryan Scott Anonsen, Jan Haug Rusten, Tor-Erik Lazarou, Michael Deretic, Vojo Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for response to pathogens |
title | Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and
TFEB at a regulatory node critical for response to pathogens |
title_full | Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and
TFEB at a regulatory node critical for response to pathogens |
title_fullStr | Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and
TFEB at a regulatory node critical for response to pathogens |
title_full_unstemmed | Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and
TFEB at a regulatory node critical for response to pathogens |
title_short | Mammalian Atg8 proteins and autophagy factor IRGM control mTOR and
TFEB at a regulatory node critical for response to pathogens |
title_sort | mammalian atg8 proteins and autophagy factor irgm control mtor and
tfeb at a regulatory node critical for response to pathogens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482486/ https://www.ncbi.nlm.nih.gov/pubmed/32753672 http://dx.doi.org/10.1038/s41556-020-0549-1 |
work_keys_str_mv | AT kumarsuresh mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT jainashish mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT choiseongwon mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT dasilvagustavopeixotoduarte mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT allerslee mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT muddmichalh mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT petersryanscott mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT anonsenjanhaug mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT rustentorerik mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT lazaroumichael mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens AT dereticvojo mammalianatg8proteinsandautophagyfactorirgmcontrolmtorandtfebataregulatorynodecriticalforresponsetopathogens |