Cargando…

Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer

Developing prognostic biomarkers for specific cancer types that accurately predict patient survival is increasingly important in clinical research and practice. Despite the enormous potential of prognostic signatures, proposed models have found limited implementations in routine clinical practice. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaafsma, Evelien, Zhao, Yanding, Wang, Yue, Varn, Frederick S., Zhu, Kenneth, Yang, Huan, Cheng, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483260/
https://www.ncbi.nlm.nih.gov/pubmed/32144347
http://dx.doi.org/10.1038/s41374-020-0413-8
_version_ 1783580910266875904
author Schaafsma, Evelien
Zhao, Yanding
Wang, Yue
Varn, Frederick S.
Zhu, Kenneth
Yang, Huan
Cheng, Chao
author_facet Schaafsma, Evelien
Zhao, Yanding
Wang, Yue
Varn, Frederick S.
Zhu, Kenneth
Yang, Huan
Cheng, Chao
author_sort Schaafsma, Evelien
collection PubMed
description Developing prognostic biomarkers for specific cancer types that accurately predict patient survival is increasingly important in clinical research and practice. Despite the enormous potential of prognostic signatures, proposed models have found limited implementations in routine clinical practice. Herein, we propose a generic, RNA sequencing platform-independent, statistical framework named Whole Transcriptome Signature for Prognostic Prediction (WTSPP) to generate prognostic gene signatures. Using ovarian cancer and lung adenocarcinoma as examples, we provide evidence that our prognostic signatures over-perform previous reported signatures, capture prognostic features not explained by clinical variables and expose biologically relevant prognostic pathways, including those involved in the immune system and cell cycle. Our approach demonstrates a robust method for developing prognostic gene expression signatures. In conclusion, our statistical framework can be generally applied to all cancer types for prognostic prediction and might be extended to other human diseases. The proposed method is implemented as an R package (PanCancerSig) and is freely available on GitHub (https://github.com/Cheng-Lab-GitHub/PanCancer_Signature).
format Online
Article
Text
id pubmed-7483260
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-74832602020-09-21 Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer Schaafsma, Evelien Zhao, Yanding Wang, Yue Varn, Frederick S. Zhu, Kenneth Yang, Huan Cheng, Chao Lab Invest Article Developing prognostic biomarkers for specific cancer types that accurately predict patient survival is increasingly important in clinical research and practice. Despite the enormous potential of prognostic signatures, proposed models have found limited implementations in routine clinical practice. Herein, we propose a generic, RNA sequencing platform-independent, statistical framework named Whole Transcriptome Signature for Prognostic Prediction (WTSPP) to generate prognostic gene signatures. Using ovarian cancer and lung adenocarcinoma as examples, we provide evidence that our prognostic signatures over-perform previous reported signatures, capture prognostic features not explained by clinical variables and expose biologically relevant prognostic pathways, including those involved in the immune system and cell cycle. Our approach demonstrates a robust method for developing prognostic gene expression signatures. In conclusion, our statistical framework can be generally applied to all cancer types for prognostic prediction and might be extended to other human diseases. The proposed method is implemented as an R package (PanCancerSig) and is freely available on GitHub (https://github.com/Cheng-Lab-GitHub/PanCancer_Signature). 2020-03-06 2020-10 /pmc/articles/PMC7483260/ /pubmed/32144347 http://dx.doi.org/10.1038/s41374-020-0413-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Schaafsma, Evelien
Zhao, Yanding
Wang, Yue
Varn, Frederick S.
Zhu, Kenneth
Yang, Huan
Cheng, Chao
Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title_full Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title_fullStr Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title_full_unstemmed Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title_short Whole Transcriptome Signature for Prognostic Prediction (WTSPP): application of whole transcriptome signature for prognostic prediction in cancer
title_sort whole transcriptome signature for prognostic prediction (wtspp): application of whole transcriptome signature for prognostic prediction in cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483260/
https://www.ncbi.nlm.nih.gov/pubmed/32144347
http://dx.doi.org/10.1038/s41374-020-0413-8
work_keys_str_mv AT schaafsmaevelien wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT zhaoyanding wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT wangyue wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT varnfredericks wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT zhukenneth wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT yanghuan wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer
AT chengchao wholetranscriptomesignatureforprognosticpredictionwtsppapplicationofwholetranscriptomesignatureforprognosticpredictionincancer