Cargando…
Volumetric Segmentation of Cell Cycle Markers in Confocal Images Using Machine Learning and Deep Learning
Understanding plant growth processes is important for many aspects of biology and food security. Automating the observations of plant development—a process referred to as plant phenotyping—is increasingly important in the plant sciences, and is often a bottleneck. Automated tools are required to ana...
Autores principales: | Khan, Faraz Ahmad, Voß, Ute, Pound, Michael P., French, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483761/ https://www.ncbi.nlm.nih.gov/pubmed/32983190 http://dx.doi.org/10.3389/fpls.2020.01275 |
Ejemplares similares
-
Deep Learning-Based Segmentation of 3D Volumetric Image and Microstructural Analysis
por: Mahmud, Bahar Uddin, et al.
Publicado: (2023) -
Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets
por: Kar, Anuradha, et al.
Publicado: (2022) -
Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot)
por: Narisetti, Narendra, et al.
Publicado: (2022) -
A Segmentation-Guided Deep Learning Framework for Leaf Counting
por: Fan, Xijian, et al.
Publicado: (2022) -
Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal Microscopy Images Using Deep Learning
por: Setu, Md Asif Khan, et al.
Publicado: (2022)