Cargando…
COVID-19 outbreak and beyond: the information content of registered short-time workers for GDP now- and forecasting
The number of short-time workers from January to April 2020 is used to now- and forecast quarterly GDP growth. We purge the monthly log level series from the systematic component to extract unexpected changes or shocks to log short-time workers. These monthly shocks are included in a univariate mode...
Autor principal: | Kaufmann, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484615/ https://www.ncbi.nlm.nih.gov/pubmed/32934939 http://dx.doi.org/10.1186/s41937-020-00053-x |
Ejemplares similares
-
Covid-19 outbreak and beyond: a retrospect on the information content of short-time workers for GDP now- and forecasting
por: Kaufmann, Sylvia
Publicado: (2023) -
Forecasting GDP with many predictors in a small open economy: forecast or information pooling?
por: Chow, Hwee Kwan, et al.
Publicado: (2023) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
por: Armeanu, Daniel, et al.
Publicado: (2017) -
China’s GDP forecasting using Long Short Term Memory Recurrent Neural Network and Hidden Markov Model
por: Zhang, Junhuan, et al.
Publicado: (2022)