Cargando…
Boosting radiotherapy dose calculation accuracy with deep learning
In radiotherapy, a trade‐off exists between computational workload/speed and dose calculation accuracy. Calculation methods like pencil‐beam convolution can be much faster than Monte‐Carlo methods, but less accurate. The dose difference, mostly caused by inhomogeneities and electronic disequilibrium...
Autores principales: | Xing, Yixun, Zhang, You, Nguyen, Dan, Lin, Mu‐Han, Lu, Weiguo, Jiang, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484829/ https://www.ncbi.nlm.nih.gov/pubmed/32559018 http://dx.doi.org/10.1002/acm2.12937 |
Ejemplares similares
-
Dosimetric assessment of patient dose calculation on a deep learning‐based synthesized computed tomography image for adaptive radiotherapy
por: Lemus, Olga M. Dona, et al.
Publicado: (2022) -
Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments
por: Held, Mareike, et al.
Publicado: (2016) -
Verification of the accuracy of a photon dose‐calculation algorithm
por: Gifford, Kent A., et al.
Publicado: (2002) -
Convolution‐based modified Clarkson integration (CMCI) for electron cutout factor calculation
por: Chang, Jina, et al.
Publicado: (2018) -
Impact of computed tomography (CT) reconstruction kernels on radiotherapy dose calculation
por: Vergalasova, Irina, et al.
Publicado: (2020)