Cargando…

The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems

BACKGROUND: Throughout the last years, carbon‐fibre‐reinforced PEEK (CFP) pedicle screw systems were introduced to replace standard titanium alloy (Ti) implants for spinal instrumentation, promising improved radiotherapy (RT) treatment planning accuracy. We compared the dosimetric impact of both imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Birgit S., Ryang, Yu‐Mi, Oechsner, Markus, Düsberg, Mathias, Meyer, Bernhard, Combs, Stephanie E., Wilkens, Jan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484848/
https://www.ncbi.nlm.nih.gov/pubmed/32476247
http://dx.doi.org/10.1002/acm2.12905
_version_ 1783581057900085248
author Müller, Birgit S.
Ryang, Yu‐Mi
Oechsner, Markus
Düsberg, Mathias
Meyer, Bernhard
Combs, Stephanie E.
Wilkens, Jan J.
author_facet Müller, Birgit S.
Ryang, Yu‐Mi
Oechsner, Markus
Düsberg, Mathias
Meyer, Bernhard
Combs, Stephanie E.
Wilkens, Jan J.
author_sort Müller, Birgit S.
collection PubMed
description BACKGROUND: Throughout the last years, carbon‐fibre‐reinforced PEEK (CFP) pedicle screw systems were introduced to replace standard titanium alloy (Ti) implants for spinal instrumentation, promising improved radiotherapy (RT) treatment planning accuracy. We compared the dosimetric impact of both implants for intensity modulated proton (IMPT) and volumetric arc photon therapy (VMAT), with the focus on uncertainties in Hounsfield unit assignment of titanium alloy. METHODS: Retrospective planning was performed on CT data of five patients with Ti and five with CFP implants. Carbon‐fibre‐reinforced PEEK systems comprised radiolucent pedicle screws with thin titanium‐coated regions and titanium tulips. For each patient, one IMPT and one VMAT plan were generated with a nominal relative stopping power (SP) (IMPT) and electron density (ρ) (VMAT) and recalculated onto the identical CT with increased and decreased SP or ρ by ±6% for the titanium components. RESULTS: Recalculated VMAT dose distributions hardly deviated from the nominal plans for both screw types. IMPT plans resulted in more heterogeneous target coverage, measured by the standard deviation σ inside the target, which increased on average by 7.6 ± 2.3% (Ti) vs 3.4 ± 1.2% (CFP). Larger SPs lead to lower target minimum doses, lower SPs to higher dose maxima, with a more pronounced effect for Ti screws. CONCLUSIONS: While VMAT plans showed no relevant difference in dosimetric quality between both screw types, IMPT plans demonstrated the benefit of CFP screws through a smaller dosimetric impact of CT‐value uncertainties compared to Ti. Reducing metal components in implants will therefore improve dose calculation accuracy and lower the risk for tumor underdosage.
format Online
Article
Text
id pubmed-7484848
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74848482020-09-17 The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems Müller, Birgit S. Ryang, Yu‐Mi Oechsner, Markus Düsberg, Mathias Meyer, Bernhard Combs, Stephanie E. Wilkens, Jan J. J Appl Clin Med Phys Radiation Oncology Physics BACKGROUND: Throughout the last years, carbon‐fibre‐reinforced PEEK (CFP) pedicle screw systems were introduced to replace standard titanium alloy (Ti) implants for spinal instrumentation, promising improved radiotherapy (RT) treatment planning accuracy. We compared the dosimetric impact of both implants for intensity modulated proton (IMPT) and volumetric arc photon therapy (VMAT), with the focus on uncertainties in Hounsfield unit assignment of titanium alloy. METHODS: Retrospective planning was performed on CT data of five patients with Ti and five with CFP implants. Carbon‐fibre‐reinforced PEEK systems comprised radiolucent pedicle screws with thin titanium‐coated regions and titanium tulips. For each patient, one IMPT and one VMAT plan were generated with a nominal relative stopping power (SP) (IMPT) and electron density (ρ) (VMAT) and recalculated onto the identical CT with increased and decreased SP or ρ by ±6% for the titanium components. RESULTS: Recalculated VMAT dose distributions hardly deviated from the nominal plans for both screw types. IMPT plans resulted in more heterogeneous target coverage, measured by the standard deviation σ inside the target, which increased on average by 7.6 ± 2.3% (Ti) vs 3.4 ± 1.2% (CFP). Larger SPs lead to lower target minimum doses, lower SPs to higher dose maxima, with a more pronounced effect for Ti screws. CONCLUSIONS: While VMAT plans showed no relevant difference in dosimetric quality between both screw types, IMPT plans demonstrated the benefit of CFP screws through a smaller dosimetric impact of CT‐value uncertainties compared to Ti. Reducing metal components in implants will therefore improve dose calculation accuracy and lower the risk for tumor underdosage. John Wiley and Sons Inc. 2020-05-31 /pmc/articles/PMC7484848/ /pubmed/32476247 http://dx.doi.org/10.1002/acm2.12905 Text en © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Radiation Oncology Physics
Müller, Birgit S.
Ryang, Yu‐Mi
Oechsner, Markus
Düsberg, Mathias
Meyer, Bernhard
Combs, Stephanie E.
Wilkens, Jan J.
The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title_full The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title_fullStr The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title_full_unstemmed The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title_short The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced PEEK systems
title_sort dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon‐fiber‐reinforced peek systems
topic Radiation Oncology Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484848/
https://www.ncbi.nlm.nih.gov/pubmed/32476247
http://dx.doi.org/10.1002/acm2.12905
work_keys_str_mv AT mullerbirgits thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT ryangyumi thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT oechsnermarkus thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT dusbergmathias thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT meyerbernhard thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT combsstephaniee thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT wilkensjanj thedosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT mullerbirgits dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT ryangyumi dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT oechsnermarkus dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT dusbergmathias dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT meyerbernhard dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT combsstephaniee dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems
AT wilkensjanj dosimetricimpactofstabilizingspinalimplantsinradiotherapytreatmentplanningwithprotonsandphotonsstandardtitaniumalloyvsradiolucentcarbonfiberreinforcedpeeksystems