Cargando…
Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection
We present a new approach for a biometric system based on electroencephalographic (EEG) signals of resting-state, that can identify a subject and reject intruders with a minimal subset of EEG channels. To select features, we first use the discrete wavelet transform (DWT) or empirical mode decomposit...
Autores principales: | Moctezuma, Luis Alfredo, Molinas, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484900/ https://www.ncbi.nlm.nih.gov/pubmed/32913275 http://dx.doi.org/10.1038/s41598-020-72051-1 |
Ejemplares similares
-
Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2022) -
Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization
por: Soler, Andres, et al.
Publicado: (2022) -
Classification of low-density EEG for epileptic seizures by energy and fractal features based on EMD
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020)