Cargando…
Discriminating electrocardiographic responses to His-bundle pacing using machine learning
BACKGROUND: His-bundle pacing (HBP) has emerged as an alternative to conventional ventricular pacing because of its ability to deliver physiological ventricular activation. Pacing at the His bundle produces different electrocardiographic (ECG) responses: selective His-bundle pacing (S-HBP), non-sele...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484933/ https://www.ncbi.nlm.nih.gov/pubmed/32954375 http://dx.doi.org/10.1016/j.cvdhj.2020.07.001 |
_version_ | 1783581073878286336 |
---|---|
author | Arnold, Ahran D. Howard, James P. Gopi, Aiswarya Chan, Cheng Pou Ali, Nadine Keene, Daniel Shun-Shin, Matthew J. Ahmad, Yousif Wright, Ian J. Ng, Fu Siong Linton, Nick W.F. Kanagaratnam, Prapa Peters, Nicholas S. Rueckert, Daniel Francis, Darrel P. Whinnett, Zachary I. |
author_facet | Arnold, Ahran D. Howard, James P. Gopi, Aiswarya Chan, Cheng Pou Ali, Nadine Keene, Daniel Shun-Shin, Matthew J. Ahmad, Yousif Wright, Ian J. Ng, Fu Siong Linton, Nick W.F. Kanagaratnam, Prapa Peters, Nicholas S. Rueckert, Daniel Francis, Darrel P. Whinnett, Zachary I. |
author_sort | Arnold, Ahran D. |
collection | PubMed |
description | BACKGROUND: His-bundle pacing (HBP) has emerged as an alternative to conventional ventricular pacing because of its ability to deliver physiological ventricular activation. Pacing at the His bundle produces different electrocardiographic (ECG) responses: selective His-bundle pacing (S-HBP), non-selective His bundle pacing (NS-HBP), and myocardium-only capture (MOC). These 3 capture types must be distinguished from each other, which can be challenging and time-consuming even for experts. OBJECTIVE: The purpose of this study was to use artificial intelligence (AI) in the form of supervised machine learning using a convolutional neural network (CNN) to automate HBP ECG interpretation. METHODS: We identified patients who had undergone HBP and extracted raw 12-lead ECG data during S-HBP, NS-HBP, and MOC. A CNN was trained, using 3-fold cross-validation, on 75% of the segmented QRS complexes labeled with their capture type. The remaining 25% was kept aside as a testing dataset. RESULTS: The CNN was trained with 1297 QRS complexes from 59 patients. Cohen kappa for the neural network’s performance on the 17-patient testing set was 0.59 (95% confidence interval 0.30 to 0.88; P <.0001), with an overall accuracy of 75%. The CNN’s accuracy in the 17-patient testing set was 67% for S-HBP, 71% for NS-HBP, and 84% for MOC. CONCLUSION: We demonstrated proof of concept that a neural network can be trained to automate discrimination between HBP ECG responses. When a larger dataset is trained to higher accuracy, automated AI ECG analysis could facilitate HBP implantation and follow-up and prevent complications resulting from incorrect HBP ECG analysis. |
format | Online Article Text |
id | pubmed-7484933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-74849332020-09-17 Discriminating electrocardiographic responses to His-bundle pacing using machine learning Arnold, Ahran D. Howard, James P. Gopi, Aiswarya Chan, Cheng Pou Ali, Nadine Keene, Daniel Shun-Shin, Matthew J. Ahmad, Yousif Wright, Ian J. Ng, Fu Siong Linton, Nick W.F. Kanagaratnam, Prapa Peters, Nicholas S. Rueckert, Daniel Francis, Darrel P. Whinnett, Zachary I. Cardiovasc Digit Health J Full Length Article BACKGROUND: His-bundle pacing (HBP) has emerged as an alternative to conventional ventricular pacing because of its ability to deliver physiological ventricular activation. Pacing at the His bundle produces different electrocardiographic (ECG) responses: selective His-bundle pacing (S-HBP), non-selective His bundle pacing (NS-HBP), and myocardium-only capture (MOC). These 3 capture types must be distinguished from each other, which can be challenging and time-consuming even for experts. OBJECTIVE: The purpose of this study was to use artificial intelligence (AI) in the form of supervised machine learning using a convolutional neural network (CNN) to automate HBP ECG interpretation. METHODS: We identified patients who had undergone HBP and extracted raw 12-lead ECG data during S-HBP, NS-HBP, and MOC. A CNN was trained, using 3-fold cross-validation, on 75% of the segmented QRS complexes labeled with their capture type. The remaining 25% was kept aside as a testing dataset. RESULTS: The CNN was trained with 1297 QRS complexes from 59 patients. Cohen kappa for the neural network’s performance on the 17-patient testing set was 0.59 (95% confidence interval 0.30 to 0.88; P <.0001), with an overall accuracy of 75%. The CNN’s accuracy in the 17-patient testing set was 67% for S-HBP, 71% for NS-HBP, and 84% for MOC. CONCLUSION: We demonstrated proof of concept that a neural network can be trained to automate discrimination between HBP ECG responses. When a larger dataset is trained to higher accuracy, automated AI ECG analysis could facilitate HBP implantation and follow-up and prevent complications resulting from incorrect HBP ECG analysis. Elsevier 2020-08-26 /pmc/articles/PMC7484933/ /pubmed/32954375 http://dx.doi.org/10.1016/j.cvdhj.2020.07.001 Text en © 2020 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Full Length Article Arnold, Ahran D. Howard, James P. Gopi, Aiswarya Chan, Cheng Pou Ali, Nadine Keene, Daniel Shun-Shin, Matthew J. Ahmad, Yousif Wright, Ian J. Ng, Fu Siong Linton, Nick W.F. Kanagaratnam, Prapa Peters, Nicholas S. Rueckert, Daniel Francis, Darrel P. Whinnett, Zachary I. Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title | Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title_full | Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title_fullStr | Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title_full_unstemmed | Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title_short | Discriminating electrocardiographic responses to His-bundle pacing using machine learning |
title_sort | discriminating electrocardiographic responses to his-bundle pacing using machine learning |
topic | Full Length Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484933/ https://www.ncbi.nlm.nih.gov/pubmed/32954375 http://dx.doi.org/10.1016/j.cvdhj.2020.07.001 |
work_keys_str_mv | AT arnoldahrand discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT howardjamesp discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT gopiaiswarya discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT chanchengpou discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT alinadine discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT keenedaniel discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT shunshinmatthewj discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT ahmadyousif discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT wrightianj discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT ngfusiong discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT lintonnickwf discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT kanagaratnamprapa discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT petersnicholass discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT rueckertdaniel discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT francisdarrelp discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning AT whinnettzacharyi discriminatingelectrocardiographicresponsestohisbundlepacingusingmachinelearning |