Cargando…

MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2

Pancreatic carcinoma (PC) is a rapidly progressive, fatal malignant tumor with the poorest prognosis among all major carcinoma types. MicroRNAs (miRNAs/miRs) have been indicated to be key post-transcriptional regulatory factors, which are involved in cancer development. The present study was designe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wei, Ning, Jin-zhuo, Tang, Zhi-gang, He, Ying, Yao, Li-chao, Ye, Lin, Wu, Lun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485308/
https://www.ncbi.nlm.nih.gov/pubmed/32952643
http://dx.doi.org/10.3892/etm.2020.9181
Descripción
Sumario:Pancreatic carcinoma (PC) is a rapidly progressive, fatal malignant tumor with the poorest prognosis among all major carcinoma types. MicroRNAs (miRNAs/miRs) have been indicated to be key post-transcriptional regulatory factors, which are involved in cancer development. The present study was designed to investigate the effect of miR-23a on PC cell proliferation, metastasis and apoptosis. The expression of miR-23a was detected in a normal pancreatic ductal epithelial cell line and three PC cell lines, and miR-23a inhibitor or mimics were transfected into the Panc-1 and MiaPaCa2 PC cells. The association between miR-23a and tissue factor pathway inhibitor (TFPI)-2 was examined using a luciferase reporter assay. MTT and flow cytometry assays were used to assess cell viability and apoptosis, respectively. Furthermore, wound-healing, Transwell and Matrigel assays were used to evaluate cell migration and invasion abilities, and the protein expression level of TFPI-2 was determined using western blot analysis. The results of the present study revealed that miR-23a was upregulated in PC cells. Furthermore, TFPI-2 was identified as a downstream target of miR-23a, and TFPI-2 expression was found to be increased following miR-23a knockdown. In addition, functional assays revealed that downregulation of miR-23a decreased PC cell proliferation, migration and invasiveness and promoted cell apoptosis, while miR-23a overexpression exerted the opposite effects. Furthermore, TFPI-2 knockdown rescued the biological effects on PC cells, which were induced by miR-23a knockdown. The results of the present study indicated that miR-23a negatively modulated TFPI-2 expression in vitro and enhanced the malignant phenotypes of PC cells. Therefore, miR-23a may be a potential marker and/or target for the diagnosis and treatment of PC.