Cargando…

Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection

The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Joanna C., Broncel, Malgorzata, Teague, Helena, Russell, Matt R. G., McGovern, Olivia L., Renshaw, Matt, Frith, David, Snijders, Ambrosius P., Collinson, Lucy, Carruthers, Vern B., Ewald, Sarah E., Treeck, Moritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485689/
https://www.ncbi.nlm.nih.gov/pubmed/32907954
http://dx.doi.org/10.1128/mSphere.00792-20
_version_ 1783581193291169792
author Young, Joanna C.
Broncel, Malgorzata
Teague, Helena
Russell, Matt R. G.
McGovern, Olivia L.
Renshaw, Matt
Frith, David
Snijders, Ambrosius P.
Collinson, Lucy
Carruthers, Vern B.
Ewald, Sarah E.
Treeck, Moritz
author_facet Young, Joanna C.
Broncel, Malgorzata
Teague, Helena
Russell, Matt R. G.
McGovern, Olivia L.
Renshaw, Matt
Frith, David
Snijders, Ambrosius P.
Collinson, Lucy
Carruthers, Vern B.
Ewald, Sarah E.
Treeck, Moritz
author_sort Young, Joanna C.
collection PubMed
description The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion. Here, we assess the role of the phosphorylation of strand-forming protein 1 (SFP1) and the related protein GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. SFP1 and GRA29 can each form these structures independently of other Toxoplasma secreted proteins, although GRA29 appears to regulate SFP1 strands. We show that an unstructured region at the C termini of SFP1 and GRA29 is required for the formation of strands and that mimicking the phosphorylation of this domain of SFP1 negatively regulates strand development. When tachyzoites convert to chronic-stage bradyzoites, both proteins show a dispersed localization throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms, and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analyses comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. While we found no direct evidence for phosphorylation playing a dominant role for SFP1/GRA29 redistribution in the cyst, these data support a model in which secreted kinases and phosphatases contribute to the regulation of secreted proteins during stage conversion. IMPORTANCE Toxoplasma gondii is a common parasite that infects up to one-third of the human population. Initially, the parasite grows rapidly, infecting and destroying cells of the host, but subsequently switches to a slow-growing form and establishes chronic infection. In both stages, the parasite lives within a membrane-bound vacuole within the host cell, but in the chronic stage, a durable cyst wall is synthesized, which provides protection to the parasite during transmission to a new host. Toxoplasma secretes proteins into the vacuole to build its replicative niche, and previous studies identified many of these proteins as phosphorylated. We investigate two secreted proteins and show that a phosphorylated region plays an important role in their regulation in acute stages. We also observed widespread phosphorylation of secreted proteins when parasites convert from acute to chronic stages, providing new insight into how the cyst wall may be dynamically regulated.
format Online
Article
Text
id pubmed-7485689
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-74856892020-09-15 Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection Young, Joanna C. Broncel, Malgorzata Teague, Helena Russell, Matt R. G. McGovern, Olivia L. Renshaw, Matt Frith, David Snijders, Ambrosius P. Collinson, Lucy Carruthers, Vern B. Ewald, Sarah E. Treeck, Moritz mSphere Research Article The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion. Here, we assess the role of the phosphorylation of strand-forming protein 1 (SFP1) and the related protein GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. SFP1 and GRA29 can each form these structures independently of other Toxoplasma secreted proteins, although GRA29 appears to regulate SFP1 strands. We show that an unstructured region at the C termini of SFP1 and GRA29 is required for the formation of strands and that mimicking the phosphorylation of this domain of SFP1 negatively regulates strand development. When tachyzoites convert to chronic-stage bradyzoites, both proteins show a dispersed localization throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms, and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analyses comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. While we found no direct evidence for phosphorylation playing a dominant role for SFP1/GRA29 redistribution in the cyst, these data support a model in which secreted kinases and phosphatases contribute to the regulation of secreted proteins during stage conversion. IMPORTANCE Toxoplasma gondii is a common parasite that infects up to one-third of the human population. Initially, the parasite grows rapidly, infecting and destroying cells of the host, but subsequently switches to a slow-growing form and establishes chronic infection. In both stages, the parasite lives within a membrane-bound vacuole within the host cell, but in the chronic stage, a durable cyst wall is synthesized, which provides protection to the parasite during transmission to a new host. Toxoplasma secretes proteins into the vacuole to build its replicative niche, and previous studies identified many of these proteins as phosphorylated. We investigate two secreted proteins and show that a phosphorylated region plays an important role in their regulation in acute stages. We also observed widespread phosphorylation of secreted proteins when parasites convert from acute to chronic stages, providing new insight into how the cyst wall may be dynamically regulated. American Society for Microbiology 2020-09-09 /pmc/articles/PMC7485689/ /pubmed/32907954 http://dx.doi.org/10.1128/mSphere.00792-20 Text en © Crown copyright 2020. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Young, Joanna C.
Broncel, Malgorzata
Teague, Helena
Russell, Matt R. G.
McGovern, Olivia L.
Renshaw, Matt
Frith, David
Snijders, Ambrosius P.
Collinson, Lucy
Carruthers, Vern B.
Ewald, Sarah E.
Treeck, Moritz
Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title_full Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title_fullStr Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title_full_unstemmed Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title_short Phosphorylation of Toxoplasma gondii Secreted Proteins during Acute and Chronic Stages of Infection
title_sort phosphorylation of toxoplasma gondii secreted proteins during acute and chronic stages of infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485689/
https://www.ncbi.nlm.nih.gov/pubmed/32907954
http://dx.doi.org/10.1128/mSphere.00792-20
work_keys_str_mv AT youngjoannac phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT broncelmalgorzata phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT teaguehelena phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT russellmattrg phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT mcgovernolivial phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT renshawmatt phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT frithdavid phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT snijdersambrosiusp phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT collinsonlucy phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT carruthersvernb phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT ewaldsarahe phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection
AT treeckmoritz phosphorylationoftoxoplasmagondiisecretedproteinsduringacuteandchronicstagesofinfection