Cargando…

Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics

This work provides an in-depth computational performance study of the parallel finite-difference time-domain (FDTD) method. The parallelization is done at various levels including: shared- (OpenMP) and distributed- (MPI) memory paradigms and vectorization on three different architectures: Intel’s Kn...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Cabello N., Miguel, Abaļenkovs, Maksims, Diaz Angulo, Luis M., Cobos Sanchez, Clemente, Moglie, Franco, Garcia, Salvador G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485784/
https://www.ncbi.nlm.nih.gov/pubmed/32915812
http://dx.doi.org/10.1371/journal.pone.0238115
_version_ 1783581214549999616
author Ruiz-Cabello N., Miguel
Abaļenkovs, Maksims
Diaz Angulo, Luis M.
Cobos Sanchez, Clemente
Moglie, Franco
Garcia, Salvador G.
author_facet Ruiz-Cabello N., Miguel
Abaļenkovs, Maksims
Diaz Angulo, Luis M.
Cobos Sanchez, Clemente
Moglie, Franco
Garcia, Salvador G.
author_sort Ruiz-Cabello N., Miguel
collection PubMed
description This work provides an in-depth computational performance study of the parallel finite-difference time-domain (FDTD) method. The parallelization is done at various levels including: shared- (OpenMP) and distributed- (MPI) memory paradigms and vectorization on three different architectures: Intel’s Knights Landing, Skylake and ARM’s Cavium ThunderX2. This study contributes to prove, in a systematic manner, the well-established claim within the Computational Electromagnetic community, that the main factor limiting FDTD performance, in realistic problems, is the memory bandwidth. Consequently a memory bandwidth threshold can be assessed depending on the problem size in order to attain optimal performance. Finally, the results of this study have been used to optimize the workload balancing of simulation of a bioelectromagnetic problem consisting in the exposure of a human model to a reverberation chamber-like environment.
format Online
Article
Text
id pubmed-7485784
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-74857842020-09-21 Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics Ruiz-Cabello N., Miguel Abaļenkovs, Maksims Diaz Angulo, Luis M. Cobos Sanchez, Clemente Moglie, Franco Garcia, Salvador G. PLoS One Research Article This work provides an in-depth computational performance study of the parallel finite-difference time-domain (FDTD) method. The parallelization is done at various levels including: shared- (OpenMP) and distributed- (MPI) memory paradigms and vectorization on three different architectures: Intel’s Knights Landing, Skylake and ARM’s Cavium ThunderX2. This study contributes to prove, in a systematic manner, the well-established claim within the Computational Electromagnetic community, that the main factor limiting FDTD performance, in realistic problems, is the memory bandwidth. Consequently a memory bandwidth threshold can be assessed depending on the problem size in order to attain optimal performance. Finally, the results of this study have been used to optimize the workload balancing of simulation of a bioelectromagnetic problem consisting in the exposure of a human model to a reverberation chamber-like environment. Public Library of Science 2020-09-11 /pmc/articles/PMC7485784/ /pubmed/32915812 http://dx.doi.org/10.1371/journal.pone.0238115 Text en © 2020 Ruiz-Cabello N. et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ruiz-Cabello N., Miguel
Abaļenkovs, Maksims
Diaz Angulo, Luis M.
Cobos Sanchez, Clemente
Moglie, Franco
Garcia, Salvador G.
Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title_full Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title_fullStr Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title_full_unstemmed Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title_short Performance of parallel FDTD method for shared- and distributed-memory architectures: Application tobioelectromagnetics
title_sort performance of parallel fdtd method for shared- and distributed-memory architectures: application tobioelectromagnetics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485784/
https://www.ncbi.nlm.nih.gov/pubmed/32915812
http://dx.doi.org/10.1371/journal.pone.0238115
work_keys_str_mv AT ruizcabellonmiguel performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics
AT abalenkovsmaksims performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics
AT diazanguloluism performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics
AT cobossanchezclemente performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics
AT mogliefranco performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics
AT garciasalvadorg performanceofparallelfdtdmethodforsharedanddistributedmemoryarchitecturesapplicationtobioelectromagnetics