Cargando…
Interactive machine learning for fast and robust cell profiling
Automated profiling of cell morphology is a powerful tool for inferring cell function. However, this technique retains a high barrier to entry. In particular, configuring image processing parameters for optimal cell profiling is susceptible to cognitive biases and dependent on user experience. Here,...
Autores principales: | Laux, Lisa, Cutiongco, Marie F. A., Gadegaard, Nikolaj, Jensen, Bjørn Sand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485821/ https://www.ncbi.nlm.nih.gov/pubmed/32915784 http://dx.doi.org/10.1371/journal.pone.0237972 |
Ejemplares similares
-
Predicting gene expression using morphological cell responses to nanotopography
por: Cutiongco, Marie F. A., et al.
Publicado: (2020) -
Image based Machine Learning for identification of macrophage subsets
por: Rostam, Hassan M., et al.
Publicado: (2017) -
Customizable, engineered substrates for rapid screening of cellular
cues
por: Huethorst, Eline, et al.
Publicado: (2020) -
Step-and-Repeat Nanoimprint-, Photo- and Laser Lithography from One Customised CNC Machine
por: Greer, Andrew IM, et al.
Publicado: (2016) -
EFR3 and phosphatidylinositol 4-kinase IIIα regulate insulin-stimulated glucose transport and GLUT4 dispersal in 3T3-L1 adipocytes
por: Koester, Anna M., et al.
Publicado: (2022)