Cargando…
FMD-VS: A virtual sensor to index FMD virus scattering
Foot-and-mouth disease (FMD) models—analytical models for tracking and analyzing FMD outbreaks—are known as dominant tools for examining the spread of the disease under various conditions and assessing the effectiveness of countermeasures. There has been some remarkable progress in modeling research...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485836/ https://www.ncbi.nlm.nih.gov/pubmed/32915804 http://dx.doi.org/10.1371/journal.pone.0237961 |
Sumario: | Foot-and-mouth disease (FMD) models—analytical models for tracking and analyzing FMD outbreaks—are known as dominant tools for examining the spread of the disease under various conditions and assessing the effectiveness of countermeasures. There has been some remarkable progress in modeling research since the UK epidemic in 2001. Several modeling methods have been introduced, developed, and are still growing. However, in 2010 when a FMD outbreak occurred in the Miyazaki prefecture, a crucial problem reported: Once a regional FMD outbreak occurs, municipal officials in the region must make various day-to-day decisions throughout this period of vulnerability. The deliverables of FMD modeling research in its current state appear insufficient to support the daily judgments required in such cases. FMD model can be an efficient support tool for prevention decisions. It requires being conversant with modeling and its preconditions. Therefore, most municipal officials with no knowledge or experience found full use of the model difficult. Given this limitation, the authors consider methods and systems to support users of FMD models who must make real-time epidemic-related judgments in the infected areas. We propose a virtual sensor, designated “FMD-VS,” to index FMD virus scattering in conditions where there is once a notion of FMD; and (2) shows how we apply the developed FMD-VS technique during an outbreak. In (1), we show our approach to constructing FMD-VS based on the existing FMD model and offer an analysis and evaluation method to assess its performance. We again present the results produced when the technique applied to 2010 infection data from the Miyazaki Prefecture. For (2), we outline the concept of a method that supports the prevention judgment of municipal officials and show how to use FMD-VS. |
---|