Cargando…

Investigating the Impact of Gadolinium-Based Contrast Agents on the Corrected QT Interval

Introduction The manufacturing labels for all currently marketed gadolinium-based MRI contrast agents describe adverse cardiac events reported during post-market use. The goal of this study was to determine prolongation of the rate-corrected QT interval occurs in the immediate setting after gadolini...

Descripción completa

Detalles Bibliográficos
Autores principales: Gress, Kyle L, Gallo, Tyler, Urits, Ivan, Geng, Xue, Viswanath, Omar, Kaye, Alan D, Woosley, Raymond L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485915/
https://www.ncbi.nlm.nih.gov/pubmed/32923263
http://dx.doi.org/10.7759/cureus.9668
Descripción
Sumario:Introduction The manufacturing labels for all currently marketed gadolinium-based MRI contrast agents describe adverse cardiac events reported during post-market use. The goal of this study was to determine prolongation of the rate-corrected QT interval occurs in the immediate setting after gadolinium-based MRI contrast agent injection. Methods This study enrolled adults scheduled to have a gadolinium-based MRI contrast agent injection as part of a diagnostic MRI. A single-lead electrocardiogram was recorded using the AliveCor Kardia® ECG (Mountain View, CA) device before and after injection. The rate-corrected QT interval was subsequently measured by two independent investigators. The QT interval was corrected for rate using the two most common formulas, originally cited by Bazett and Fridericia. These rate-corrected QT intervals from before and after gadolinium-based MRI contrast agent injection were compared using the Wilcoxon signed-rank test paired analysis. Results A total of 24 consenting adults had electrocardiogram that were free of motion artifact. The mean age of the final patient cohort was 59.4 years. There was an equal split of 12 men and 12 women. The mean pre-injection, rate-corrected QT interval, corrected using Bazett’s formula, was 395 msec. The mean post-injection, rate-corrected QT interval, corrected using Bazett’s formula, was 396 msec. The corrections using Fridericia's formula were 384 and 381 msec, respectively. There was no statistically significant change in Bazett-corrected QT interval (QTc-B) when pre-injection and post-injection values were directly compared. Discussion The results of the present investigation support the conclusion that gadolinium-based MRI contrast agents do not commonly affect rate-corrected QT interval in routine clinical use. While the frequency of rate-corrected QT interval prolongation might be overstated, the severity of adverse events is definitively not. A role for concomitant rate-corrected QT interval-prolonging drugs or unidentified rare factors such as genetic predisposition cannot be ruled out. The limitations of this study include its relatively small size and the implementation of a single-lead electrocardiogram to measure rate-corrected QT interval. Conclusion The present investigation revealed that significant rate-corrected QT interval prolongation, while previously reported in as many as 55% of patients after gadolinium-based MRI contrast agent injection, is not a common occurrence in the routine clinical setting.