Cargando…
Real-World Implications of a Rapidly Responsive COVID-19 Spread Model with Time-Dependent Parameters via Deep Learning: Model Development and Validation
BACKGROUND: The COVID-19 pandemic has caused major disruptions worldwide since March 2020. The experience of the 1918 influenza pandemic demonstrated that decreases in the infection rates of COVID-19 do not guarantee continuity of the trend. OBJECTIVE: The aim of this study was to develop a precise...
Autores principales: | Jung, Se Young, Jo, Hyeontae, Son, Hwijae, Hwang, Hyung Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486001/ https://www.ncbi.nlm.nih.gov/pubmed/32877350 http://dx.doi.org/10.2196/19907 |
Ejemplares similares
-
Machine Learning-Based COVID-19 Patients Triage Algorithm Using Patient-Generated Health Data from Nationwide Multicenter Database
por: Park, Min Sue, et al.
Publicado: (2022) -
Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach
por: Hwang, Hyung Ju, et al.
Publicado: (2020) -
Mechanism Design of Health Care Blockchain System Token Economy: Development Study Based on Simulated Real-World Scenarios
por: Jung, Se Young, et al.
Publicado: (2021) -
Patient-Level Cancer Prediction Models From a Nationwide Patient Cohort: Model Development and Validation
por: Lee, Eunsaem, et al.
Publicado: (2021) -
An accurate deep learning model for wheezing in children using real world data
por: Kim, Beom Joon, et al.
Publicado: (2022)