Cargando…
Mid-infrared polarization-controlled broadband achromatic metadevice
Metasurfaces provide a compact, flexible, and efficient platform to manipulate the electromagnetic waves. However, chromatic aberration imposes severe restrictions on their applications in broadband polarization control. Here, we propose a broadband achromatic methodology to implement polarization-c...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486104/ https://www.ncbi.nlm.nih.gov/pubmed/32917714 http://dx.doi.org/10.1126/sciadv.abc0711 |
Sumario: | Metasurfaces provide a compact, flexible, and efficient platform to manipulate the electromagnetic waves. However, chromatic aberration imposes severe restrictions on their applications in broadband polarization control. Here, we propose a broadband achromatic methodology to implement polarization-controlled multifunctional metadevices in mid-wavelength infrared with birefringent meta-atoms. We demonstrate the generation of polarization-controlled and achromatically on-axis focused optical vortex beams with diffraction-limited focal spots and switchable topological charge (L(∥) = 0 and L(⊥) = 2). Besides, we further implement broadband achromatic polarization beamsplitter with high polarization isolation (extinction ratio up to 21). The adoption of all-silicon configuration not only facilitates the integration with CMOS technology but also endows the polarization multiplexing meta-atoms with broad phase dispersion coverage, ensuring the large size and high performance of the metadevices. Compared with the state-of-the-art chromatic aberration-restricted polarization-controlled metadevices, our work represents a substantial advance and a step toward practical applications. |
---|