Cargando…
β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells
Mouse embryonic stem cells (ESCs) cultured in defined medium resemble the pre-implantation epiblast in the ground state, with full developmental capacity including the germline. β-Catenin is required to maintain ground state pluripotency in mouse ESCs, but its exact role is controversial. Here, we r...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486223/ https://www.ncbi.nlm.nih.gov/pubmed/32822591 http://dx.doi.org/10.1016/j.stemcr.2020.07.018 |
Sumario: | Mouse embryonic stem cells (ESCs) cultured in defined medium resemble the pre-implantation epiblast in the ground state, with full developmental capacity including the germline. β-Catenin is required to maintain ground state pluripotency in mouse ESCs, but its exact role is controversial. Here, we reveal a Tcf3-independent role of β-catenin in restraining germline and somatic lineage differentiation genes. We show that β-catenin binds target genes with E2F6 and forms a complex with E2F6 and HMGA2 or E2F6 and HP1γ. Our data indicate that these complexes help β-catenin restrain and fine-tune germ cell and neural developmental potential. Overall, our data reveal a previously unappreciated role of β-catenin in preserving lineage differentiation integrity in ground state ESCs. |
---|