Cargando…

A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries

A ureido-pyrimidinone (UPy)-functionalized poly(acrylic acid) grafted with poly(ethylene glycol)(PEG), designated PAU-g-PEG, was developed as a high performance polymer binder for Si anodes in lithium-ion batteries. By introducing both a ureido-pyrimidinone (UPy) unit, which is capable of self-heali...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Jaebin, Kim, Eunsoo, K.K., Rajeev, Kim, Yeonho, Kim, Tae-Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486292/
https://www.ncbi.nlm.nih.gov/pubmed/32917911
http://dx.doi.org/10.1038/s41598-020-71625-3
Descripción
Sumario:A ureido-pyrimidinone (UPy)-functionalized poly(acrylic acid) grafted with poly(ethylene glycol)(PEG), designated PAU-g-PEG, was developed as a high performance polymer binder for Si anodes in lithium-ion batteries. By introducing both a ureido-pyrimidinone (UPy) unit, which is capable of self-healing through dynamic hydrogen bonding within molecules as well as with Si, and an ion-conducting PEG onto the side chain of the poly(acrylic acid), this water-based self-healable and conductive polymer binder can effectively accommodate the volume changes of Si, while maintaining electronic integrity, in an electrode during repeated charge/discharge cycles. The Si@PAU-g-PEG electrode retained a high capacity of 1,450.2 mAh g(−1) and a Coulombic efficiency of 99.4% even after 350 cycles under a C-rate of 0.5 C. Under a high C-rate of 3 C, an outstanding capacity of 2,500 mAh g(−1) was also achieved, thus demonstrating its potential for improving the electrochemical performance of Si anodes.