Cargando…
Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for (18)F-NaF bone PET/CT images acquired over shorter durations using a custom-designed phantom
BACKGROUND: The Bayesian penalized likelihood (BPL) algorithm Q.Clear (GE Healthcare) allows fully convergent iterative reconstruction that results in better image quality and quantitative accuracy, while limiting image noise. The present study aimed to optimize BPL reconstruction parameters for (18...
Autores principales: | Yoshii, Tokiya, Miwa, Kenta, Yamaguchi, Masashi, Shimada, Kai, Wagatsuma, Kei, Yamao, Tensho, Kamitaka, Yuto, Hiratsuka, Seiya, Kobayashi, Rinya, Ichikawa, Hajime, Miyaji, Noriaki, Miyazaki, Tsuyoshi, Ishii, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486353/ https://www.ncbi.nlm.nih.gov/pubmed/32915344 http://dx.doi.org/10.1186/s40658-020-00325-8 |
Ejemplares similares
-
Impact of γ factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images
por: Miwa, Kenta, et al.
Publicado: (2023) -
Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging
por: Miwa, Kenta, et al.
Publicado: (2022) -
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023) -
Bayesian penalised likelihood reconstruction (Q.Clear) of (18)F-fluciclovine PET for imaging of recurrent prostate cancer: semi-quantitative and clinical evaluation
por: Teoh, Eugene J, et al.
Publicado: (2018) -
Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
por: Texte, Edgar, et al.
Publicado: (2020)