Cargando…
Designing and understanding light-harvesting devices with machine learning
Understanding the fundamental processes of light-harvesting is crucial to the development of clean energy materials and devices. Biological organisms have evolved complex metabolic mechanisms to efficiently convert sunlight into chemical energy. Unraveling the secrets of this conversion has inspired...
Autores principales: | Häse, Florian, Roch, Loïc M., Friederich, Pascal, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486390/ https://www.ncbi.nlm.nih.gov/pubmed/32917886 http://dx.doi.org/10.1038/s41467-020-17995-8 |
Ejemplares similares
-
On scientific understanding with artificial intelligence
por: Krenn, Mario, et al.
Publicado: (2022) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories
por: Häse, Florian, et al.
Publicado: (2018) -
Machine learning exciton dynamics
por: Häse, Florian, et al.
Publicado: (2016) -
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
por: Häse, Florian, et al.
Publicado: (2018)