Cargando…
Predicting the frequencies of drug side effects
A central issue in drug risk-benefit assessment is identifying frequencies of side effects in humans. Currently, frequencies are experimentally determined in randomised controlled clinical trials. We present a machine learning framework for computationally predicting frequencies of drug side effects...
Autores principales: | Galeano, Diego, Li, Shantao, Gerstein, Mark, Paccanaro, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486409/ https://www.ncbi.nlm.nih.gov/pubmed/32917868 http://dx.doi.org/10.1038/s41467-020-18305-y |
Ejemplares similares
-
Machine learning prediction of side effects for drugs in clinical trials
por: Galeano, Diego, et al.
Publicado: (2022) -
Machine learning and network medicine approaches for drug repositioning for COVID-19
por: Santos, Suzana de Siqueira, et al.
Publicado: (2021) -
Understanding genome structural variations
por: Abyzov, Alexej, et al.
Publicado: (2015) -
Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
por: Li, Shantao, et al.
Publicado: (2020) -
Whole-genome analysis of papillary kidney cancer finds significant noncoding alterations
por: Li, Shantao, et al.
Publicado: (2017)