Cargando…

Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location

Significance: Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measuremen...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yangling, Ghassemi, Pejman, Chen, Michelle, McBride, David, Casamento, Jon P., Pfefer, T. Joshua, Wang, Quanzeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486803/
https://www.ncbi.nlm.nih.gov/pubmed/32921005
http://dx.doi.org/10.1117/1.JBO.25.9.097002
Descripción
Sumario:Significance: Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance. Aim: Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location. Approach: We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects. Results: Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening. Conclusion: Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.