Cargando…

Factors controlling accumulation of organic carbon in a rift-lake, Oligocene Vietnam

Understanding of the processes of petroleum source rock (SR) accumulation in lacustrine rift basins and the behavior of lake systems as long-term carbon sinks is fragmentary. Investigation of an 800 m thick (500 m core and ~ 300 m outcrop), deep-lacustrine, Oligocene section in Vietnam, provides a r...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzi, M., Hovikoski, J., Schovsbo, N. H., Therkelsen, J., Olivarius, M., Nytoft, H. P., Nga, L. H., Thuy, N. T. T., Toan, D. M., Bojesen-Koefoed, J., Petersen, H. I., Nielsen, L. H., Abatzis, I., Korte, C., Fyhn, M. B. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486892/
https://www.ncbi.nlm.nih.gov/pubmed/32917944
http://dx.doi.org/10.1038/s41598-020-71829-7
Descripción
Sumario:Understanding of the processes of petroleum source rock (SR) accumulation in lacustrine rift basins and the behavior of lake systems as long-term carbon sinks is fragmentary. Investigation of an 800 m thick (500 m core and ~ 300 m outcrop), deep-lacustrine, Oligocene section in Vietnam, provides a rare insight into the controls and deposition of organic carbon (OC) and SR formation in continental rift basins. A multidisciplinary dataset, combining elemental data, inorganic and organic geochemistry with sedimentology, shows that the richest alginite-prone, sapropelic SR developed during periods of relative tectonic quiescence characterized by moderate primary productivity in a mainly dysoxic lacustrine basin. Increased rift activity and further development of graben morphology intensified water column stratification and anoxia, which hindered nutrient recycling. Sapropelic organic matter (OM) continued to accumulate, but with increasing amorphous OM content and decreasing total OC values. Periods of increased seasonality were characterized by thermocline weakening, enhanced mixing of water columns, increased primary productivity and diatom blooming. The results suggest that a change from dysoxia towards anoxia or extreme primary productivity does not necessarily enhance OC burial and SR quality. External nutrient input from a phosphate-rich hinterland is sufficient for sapropel formation, whereas the main limiting factor is methanogenesis.