Cargando…

Spatial validation reveals poor predictive performance of large-scale ecological mapping models

Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spa...

Descripción completa

Detalles Bibliográficos
Autores principales: Ploton, Pierre, Mortier, Frédéric, Réjou-Méchain, Maxime, Barbier, Nicolas, Picard, Nicolas, Rossi, Vivien, Dormann, Carsten, Cornu, Guillaume, Viennois, Gaëlle, Bayol, Nicolas, Lyapustin, Alexei, Gourlet-Fleury, Sylvie, Pélissier, Raphaël
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486894/
https://www.ncbi.nlm.nih.gov/pubmed/32917875
http://dx.doi.org/10.1038/s41467-020-18321-y
_version_ 1783581397640806400
author Ploton, Pierre
Mortier, Frédéric
Réjou-Méchain, Maxime
Barbier, Nicolas
Picard, Nicolas
Rossi, Vivien
Dormann, Carsten
Cornu, Guillaume
Viennois, Gaëlle
Bayol, Nicolas
Lyapustin, Alexei
Gourlet-Fleury, Sylvie
Pélissier, Raphaël
author_facet Ploton, Pierre
Mortier, Frédéric
Réjou-Méchain, Maxime
Barbier, Nicolas
Picard, Nicolas
Rossi, Vivien
Dormann, Carsten
Cornu, Guillaume
Viennois, Gaëlle
Bayol, Nicolas
Lyapustin, Alexei
Gourlet-Fleury, Sylvie
Pélissier, Raphaël
author_sort Ploton, Pierre
collection PubMed
description Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power. To illustrate this issue, we reproduce the approach of large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in central Africa to train and validate a random forest model based on multispectral and environmental variables. A standard nonspatial validation method suggests that the model predicts more than half of the forest biomass variation, while spatial validation methods accounting for SAC reveal quasi-null predictive power. This study underscores how a common practice in big data mapping studies shows an apparent high predictive power, even when predictors have poor relationships with the ecological variable of interest, thus possibly leading to erroneous maps and interpretations.
format Online
Article
Text
id pubmed-7486894
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74868942020-09-25 Spatial validation reveals poor predictive performance of large-scale ecological mapping models Ploton, Pierre Mortier, Frédéric Réjou-Méchain, Maxime Barbier, Nicolas Picard, Nicolas Rossi, Vivien Dormann, Carsten Cornu, Guillaume Viennois, Gaëlle Bayol, Nicolas Lyapustin, Alexei Gourlet-Fleury, Sylvie Pélissier, Raphaël Nat Commun Article Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power. To illustrate this issue, we reproduce the approach of large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in central Africa to train and validate a random forest model based on multispectral and environmental variables. A standard nonspatial validation method suggests that the model predicts more than half of the forest biomass variation, while spatial validation methods accounting for SAC reveal quasi-null predictive power. This study underscores how a common practice in big data mapping studies shows an apparent high predictive power, even when predictors have poor relationships with the ecological variable of interest, thus possibly leading to erroneous maps and interpretations. Nature Publishing Group UK 2020-09-11 /pmc/articles/PMC7486894/ /pubmed/32917875 http://dx.doi.org/10.1038/s41467-020-18321-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ploton, Pierre
Mortier, Frédéric
Réjou-Méchain, Maxime
Barbier, Nicolas
Picard, Nicolas
Rossi, Vivien
Dormann, Carsten
Cornu, Guillaume
Viennois, Gaëlle
Bayol, Nicolas
Lyapustin, Alexei
Gourlet-Fleury, Sylvie
Pélissier, Raphaël
Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title_full Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title_fullStr Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title_full_unstemmed Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title_short Spatial validation reveals poor predictive performance of large-scale ecological mapping models
title_sort spatial validation reveals poor predictive performance of large-scale ecological mapping models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486894/
https://www.ncbi.nlm.nih.gov/pubmed/32917875
http://dx.doi.org/10.1038/s41467-020-18321-y
work_keys_str_mv AT plotonpierre spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT mortierfrederic spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT rejoumechainmaxime spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT barbiernicolas spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT picardnicolas spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT rossivivien spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT dormanncarsten spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT cornuguillaume spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT viennoisgaelle spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT bayolnicolas spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT lyapustinalexei spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT gourletfleurysylvie spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels
AT pelissierraphael spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels