Cargando…

A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda

Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily d...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanf, Zachery R, Chavez, Andreas S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486961/
https://www.ncbi.nlm.nih.gov/pubmed/32520994
http://dx.doi.org/10.1093/gbe/evaa115
_version_ 1783581411402317824
author Hanf, Zachery R
Chavez, Andreas S
author_facet Hanf, Zachery R
Chavez, Andreas S
author_sort Hanf, Zachery R
collection PubMed
description Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily divergent prey. Despite their complex diet, earlier proteomic and transcriptomic studies of this shrew’s venom have only identified two venom proteins. Here, we investigated with comprehensive molecular approaches whether B. brevicauda venom is more complex than previously understood. We generated de novo assemblies of a B. brevicauda genome and submaxillary-gland transcriptome, as well as sequenced the salivary proteome. Our findings show that B. brevicauda’s venom composition is simple relative to their broad diet and is likely limited to seven proteins from six gene families. Additionally, we explored expression levels and rate of evolution of these venom genes and the origins of key duplications that led to toxin neofunctionalization. We also found three proteins that may be involved in endogenous self-defense. The possible synergism of the toxins suggests that vertebrate prey may be the main target of the venom. Further functional assays for all venom proteins on both vertebrate and invertebrate prey would provide further insight into the ecological relevance of venom in this species.
format Online
Article
Text
id pubmed-7486961
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-74869612020-09-15 A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda Hanf, Zachery R Chavez, Andreas S Genome Biol Evol Research Article Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily divergent prey. Despite their complex diet, earlier proteomic and transcriptomic studies of this shrew’s venom have only identified two venom proteins. Here, we investigated with comprehensive molecular approaches whether B. brevicauda venom is more complex than previously understood. We generated de novo assemblies of a B. brevicauda genome and submaxillary-gland transcriptome, as well as sequenced the salivary proteome. Our findings show that B. brevicauda’s venom composition is simple relative to their broad diet and is likely limited to seven proteins from six gene families. Additionally, we explored expression levels and rate of evolution of these venom genes and the origins of key duplications that led to toxin neofunctionalization. We also found three proteins that may be involved in endogenous self-defense. The possible synergism of the toxins suggests that vertebrate prey may be the main target of the venom. Further functional assays for all venom proteins on both vertebrate and invertebrate prey would provide further insight into the ecological relevance of venom in this species. Oxford University Press 2020-06-10 /pmc/articles/PMC7486961/ /pubmed/32520994 http://dx.doi.org/10.1093/gbe/evaa115 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research Article
Hanf, Zachery R
Chavez, Andreas S
A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title_full A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title_fullStr A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title_full_unstemmed A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title_short A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda
title_sort comprehensive multi-omic approach reveals a relatively simple venom in a diet generalist, the northern short-tailed shrew, blarina brevicauda
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486961/
https://www.ncbi.nlm.nih.gov/pubmed/32520994
http://dx.doi.org/10.1093/gbe/evaa115
work_keys_str_mv AT hanfzacheryr acomprehensivemultiomicapproachrevealsarelativelysimplevenominadietgeneralistthenorthernshorttailedshrewblarinabrevicauda
AT chavezandreass acomprehensivemultiomicapproachrevealsarelativelysimplevenominadietgeneralistthenorthernshorttailedshrewblarinabrevicauda
AT hanfzacheryr comprehensivemultiomicapproachrevealsarelativelysimplevenominadietgeneralistthenorthernshorttailedshrewblarinabrevicauda
AT chavezandreass comprehensivemultiomicapproachrevealsarelativelysimplevenominadietgeneralistthenorthernshorttailedshrewblarinabrevicauda