Cargando…

COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization

Chest X-rays are playing an important role in the testing and diagnosis of COVID-19 disease in the recent pandemic. However, due to the limited amount of labelled medical images, automated classification of these images for positive and negative cases remains the biggest challenge in their reliable...

Descripción completa

Detalles Bibliográficos
Autores principales: Zebin, Tahmina, Rezvy, Shahadate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486976/
https://www.ncbi.nlm.nih.gov/pubmed/34764549
http://dx.doi.org/10.1007/s10489-020-01867-1
Descripción
Sumario:Chest X-rays are playing an important role in the testing and diagnosis of COVID-19 disease in the recent pandemic. However, due to the limited amount of labelled medical images, automated classification of these images for positive and negative cases remains the biggest challenge in their reliable use in diagnosis and disease progression. We implemented a transfer learning pipeline for classifying COVID-19 chest X-ray images from two publicly available chest X-ray datasets(1,2). The classifier effectively distinguishes inflammation in lungs due to COVID-19 and Pneumonia from the ones with no infection (normal). We have used multiple pre-trained convolutional backbones as the feature extractor and achieved an overall detection accuracy of 90%, 94.3%, and 96.8% for the VGG16, ResNet50, and EfficientNetB0 backbones respectively. Additionally, we trained a generative adversarial framework (a CycleGAN) to generate and augment the minority COVID-19 class in our approach. For visual explanations and interpretation purposes, we implemented a gradient class activation mapping technique to highlight the regions of the input image that are important for predictions. Additionally, these visualizations can be used to monitor the affected lung regions during disease progression and severity stages.