Cargando…

Direct (17)O Isotopic Labeling of Oxides Using Mechanochemistry

[Image: see text] While (17)O NMR is increasingly being used for elucidating the structure and reactivity of complex molecular and materials systems, much effort is still required for it to become a routine analytical technique. One of the main difficulties for its development comes from the very lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chia-Hsin, Gaillard, Emeline, Mentink-Vigier, Frédéric, Chen, Kuizhi, Gan, Zhehong, Gaveau, Philippe, Rebière, Bertrand, Berthelot, Romain, Florian, Pierre, Bonhomme, Christian, Smith, Mark E., Métro, Thomas-Xavier, Alonso, Bruno, Laurencin, Danielle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487002/
https://www.ncbi.nlm.nih.gov/pubmed/32167301
http://dx.doi.org/10.1021/acs.inorgchem.0c00208
Descripción
Sumario:[Image: see text] While (17)O NMR is increasingly being used for elucidating the structure and reactivity of complex molecular and materials systems, much effort is still required for it to become a routine analytical technique. One of the main difficulties for its development comes from the very low natural abundance of (17)O (0.04%), which implies that isotopic labeling is generally needed prior to NMR analyses. However, (17)O-enrichment protocols are often unattractive in terms of cost, safety, and/or practicality, even for compounds as simple as metal oxides. Here, we demonstrate how mechanochemistry can be used in a highly efficient way for the direct (17)O isotopic labeling of a variety of s-, p-, and d-block oxides, which are of major interest for the preparation of functional ceramics and glasses: Li(2)O, CaO, Al(2)O(3), SiO(2), TiO(2), and ZrO(2). For each oxide, the enrichment step was performed under ambient conditions in less than 1 h and at low cost, which makes these synthetic approaches highly appealing in comparison to the existing literature. Using high-resolution solid-state (17)O NMR and dynamic nuclear polarization, atomic-level insight into the enrichment process is achieved, especially for titania and alumina. Indeed, it was possible to demonstrate that enriched oxygen sites are present not only at the surface but also within the oxide particles. Moreover, information on the actual reactions occurring during the milling step could be obtained by (17)O NMR, in terms of both their kinetics and the nature of the reactive species. Finally, it was demonstrated how high-resolution (17)O NMR can be used for studying the reactivity at the interfaces between different oxide particles during ball-milling, especially in cases when X-ray diffraction techniques are uninformative. More generally, such investigations will be useful not only for producing (17)O-enriched precursors efficiently but also for understanding better mechanisms of mechanochemical processes themselves.