Cargando…
A multi-class classification model for supporting the diagnosis of type II diabetes mellitus
BACKGROUND: Numerous studies have utilized machine-learning techniques to predict the early onset of type 2 diabetes mellitus. However, fewer studies have been conducted to predict an appropriate diagnosis code for the type 2 diabetes mellitus condition. Further, ensemble techniques such as bagging...
Autores principales: | Kuo, Kuang-Ming, Talley, Paul, Kao, YuHsi, Huang, Chi Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487151/ https://www.ncbi.nlm.nih.gov/pubmed/32974105 http://dx.doi.org/10.7717/peerj.9920 |
Ejemplares similares
-
Glycosylated haemoglobin for screening and diagnosis of gestational diabetes mellitus
por: Khalafallah, Alhossain, et al.
Publicado: (2016) -
Medical claims-based case–control study of temporal relationship between clinical visits for hand syndromes and subsequent diabetes diagnosis: implications for identifying patients with undiagnosed type 2 diabetes mellitus
por: Hou, Wen-Hsuan, et al.
Publicado: (2016) -
Fructosamine measurement for diabetes mellitus diagnosis and monitoring: a systematic review and meta-analysis protocol
por: Nansseu, Jobert Richie N, et al.
Publicado: (2015) -
Using telemedicine to support care for people with type 2 diabetes mellitus: a qualitative analysis of patients’ perspectives
por: Lee, Jun Yang, et al.
Publicado: (2019) -
Microvascular Outcomes after Metabolic Surgery (MOMS) in patients with type 2 diabetes mellitus and class I obesity: rationale and design for a randomised controlled trial
por: Cohen, Ricardo Vitor, et al.
Publicado: (2017)