Cargando…

COVID-19 and air pollution and meteorology-an intricate relationship: A review

Corona virus is highly uncertain and complex in space and time. Atmospheric parameters such as type of pollutants and local weather play an important role in COVID-19 cases and mortality. Many studies were carried out to understand the impact of weather on spread and severity of COVID-19 and vice-ve...

Descripción completa

Detalles Bibliográficos
Autor principal: Srivastava, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487522/
https://www.ncbi.nlm.nih.gov/pubmed/33297239
http://dx.doi.org/10.1016/j.chemosphere.2020.128297
Descripción
Sumario:Corona virus is highly uncertain and complex in space and time. Atmospheric parameters such as type of pollutants and local weather play an important role in COVID-19 cases and mortality. Many studies were carried out to understand the impact of weather on spread and severity of COVID-19 and vice-versa. A review study is conducted to understand the impact of weather and atmospheric pollution on morbidity and mortality. Studies show that aerosols containing corona virus generated by sneezes and coughs are major route for spread of virus. Viability and virulence of SARS-CoV-2 stuck on the surface of particulate matter is not yet confirmed. Studies found that an increase in particulate matter concentration causes more COVID-19 cases and mortality. Gaseous pollutant and COVID-19 cases are positively correlated. Local meteorology plays crucial role in the spread of corona virus and thus mortality. Decline in number of cases with rising temperature observed. Few studies also find that lowest and highest temperatures were related to lesser number of cases. Similarly humidity shows negative or no relationship with COVID-19 cases. Rainfall was not related whilst wind-speed plays positive role in spread of COVID-19. Solar radiation threats survival of virus, areas with lower solar radiation showed high exposure rate. Air quality tremendously improved during lockdown. A significant reduction in PM10, PM2.5, BC, NOx, SO(2), CO and VOCs concentration were observed. Lockdown had a healing effect on ozone; significant increase in its concentration was observed. Aerosols Optical Depths were found to decrease up to 50%.