Cargando…

Biological properties of bone marrow stem cells and adipose-derived stem cells derived from T2DM rats: a comparative study

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM), especially those with poor glycemic control, are characterized by low bone mass and destruction of bone microstructure. Nowadays, autologous mesenchymal stem cells (auto-MSCs) have been used to repair defects and promote tissue regeneration...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lei, Shi, Shaojie, Bai, Ruiping, Wang, Yue, Guo, Zhao, Li, Doudou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487578/
https://www.ncbi.nlm.nih.gov/pubmed/32939244
http://dx.doi.org/10.1186/s13578-020-00465-5
Descripción
Sumario:BACKGROUND: Patients with type 2 diabetes mellitus (T2DM), especially those with poor glycemic control, are characterized by low bone mass and destruction of bone microstructure. Nowadays, autologous mesenchymal stem cells (auto-MSCs) have been used to repair defects and promote tissue regeneration due to handy source, low immunogenicity and self-renewing and multi-differentiating potential. However, T2DM changed the biological properties of auto-MSCs, and investigating the most suitable auto-MSCs for T2DM patients becomes a focus in tissue engineering. RESULTS: In this research, we compared the biological characteristics of adipose-derived stem cells (ASCs) and bone marrow stem cells (BMSCs) derived from T2DM rats. These results demonstrated that ASCs had a higher proliferation rate, colony-formation and cell-sheet forming ability, while BMSCs got better osteogenesis-related staining, expression of osteogenesis-related genes and proteins, and osteogenic capacity in vitro. CONCLUSIONS: As it turned out, ASCs from T2DM had a higher proliferation, while BMSCs had significantly higher osteogenetic ability no matter in vitro and in vivo. Therefore, we should take into account the specific and dominated properties of MSC according to different needs to optimize the protocols and improve clinical outcomes for tissue regeneration of T2DM patients.