Cargando…
Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution. Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying cellular process to better understand development and disease mechani...
Autores principales: | Dadaneh, Siamak Zamani, de Figueiredo, Paul, Sze, Sing-Hoi, Zhou, Mingyuan, Qian, Xiaoning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487589/ https://www.ncbi.nlm.nih.gov/pubmed/32900358 http://dx.doi.org/10.1186/s12864-020-06938-8 |
Ejemplares similares
-
Covariate-dependent negative binomial factor analysis of RNA sequencing data
por: Zamani Dadaneh, Siamak, et al.
Publicado: (2018) -
Bayesian module identification from multiple noisy networks
por: Zamani Dadaneh, Siamak, et al.
Publicado: (2016) -
Optimal clustering with missing values
por: Boluki, Shahin, et al.
Publicado: (2019) -
Sequence count data are poorly fit by the negative binomial distribution
por: Hawinkel, Stijn, et al.
Publicado: (2020) -
Goodness-of-Fit Tests and Model Diagnostics for Negative Binomial Regression of RNA Sequencing Data
por: Mi, Gu, et al.
Publicado: (2015)