Cargando…
Pathways leading to prevention of fatal and non-fatal cardiovascular disease: An interaction model on 15 years population-based cohort study
BACKGROUND: A comprehensive study on the interaction of cardiovascular disease (CVD) risk factors is critical to prevent cardiovascular events. The main focus of this study is thus to understand direct and indirect relationships between different CVD risk factors. METHODS: A longitudinal data on adu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487611/ https://www.ncbi.nlm.nih.gov/pubmed/32891168 http://dx.doi.org/10.1186/s12944-020-01375-8 |
Sumario: | BACKGROUND: A comprehensive study on the interaction of cardiovascular disease (CVD) risk factors is critical to prevent cardiovascular events. The main focus of this study is thus to understand direct and indirect relationships between different CVD risk factors. METHODS: A longitudinal data on adults aged ≥35 years, who were free of CVD at baseline, were used in this study. The endpoints were CVD events, whereas their measurements were demographic, lifestyle components, socio-economics, anthropometric measures, laboratory findings, quality of life status, and psychological factors. A Bayesian structural equation modelling was used to determine the relationships among 21 relevant factors associated with total CVD, stroke, acute coronary syndrome (ACS), and fatal CVDs. RESULTS: In this study, a total of 3161 individuals with complete information were involved in the study. A total of 407 CVD events, with an average age of 54.77(10.66) years, occurred during follow-up. The causal associations between six latent variables were identified in the causal network for fatal and non-fatal CVDs. Lipid profile, with the coefficient of 0.26 (0.01), influenced the occurrence of CVD events as the most critical factor, while it was indirectly mediated through risky behaviours and comorbidities. Lipid profile at baseline was influenced by a wide range of other protective factors, such as quality of life and healthy lifestyle components. CONCLUSIONS: Analysing a causal network of risk factors revealed the flow of information in direct and indirect paths. It also determined predictors and demonstrated the utility of integrating multi-factor data in a complex framework to identify novel preventable pathways to reduce the risk of CVDs. |
---|