Cargando…

Network analysis of KLF5 targets showing the potential oncogenic role of SNHG12 in colorectal cancer

BACKGROUND: KLF5 is a member of the Kruppel-like factor, subfamily of zinc finger proteins that are involved in cancers. KLF5 functions as a transcription factor and regulates the diverse protein-coding genes (PCGs) in colorectal cancer (CRC). However, the long non-coding RNAs (lncRNAs) regulated by...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Qi, Chen, Linbo, Zhang, Ning, Xi, Yang, Hu, Shiyun, Ng, Derry Minyao, Ahmed, Fatma Yislam Hadi, Zhao, Guofang, Fan, Xiaoxiang, Xie, Yangyang, Dai, Xiaoyu, Jin, Yanping, Ge, Jiaxin, Dong, Changzheng, Zhang, Xinjun, Guo, Junming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487661/
https://www.ncbi.nlm.nih.gov/pubmed/32943987
http://dx.doi.org/10.1186/s12935-020-01527-x
Descripción
Sumario:BACKGROUND: KLF5 is a member of the Kruppel-like factor, subfamily of zinc finger proteins that are involved in cancers. KLF5 functions as a transcription factor and regulates the diverse protein-coding genes (PCGs) in colorectal cancer (CRC). However, the long non-coding RNAs (lncRNAs) regulated by KLF5 in CRC are currently unknown. METHODS: In this study, we first designed a computational pipeline to determine the PCG and lncRNA targets of KLF5 in CRC. Then we analyzed the motif pattern of the binding regions for the lncRNA targets. The regulatory co-factors of KLF5 were then searched for through bioinformatics analysis. We also constructed a regulatory network for KLF5 and annotated its functions. Finally, one of the KLF5 lncRNA targets, SNHG12, was selected to further explore its expression pattern and functions in CRC. RESULTS: We were able to identify 19 lncRNA targets of KLF5 and found that the motifs of the lncRNA binding sites were GC-enriched. Next, we pinpointed the transcription factors AR and HSF1 as the regulatory co-factors of KLF5 through bioinformatics analysis. Then, through the analysis of the regulatory network, we found that KLF5 may be involved in DNA replication, DNA repair, and the cell cycle. Furthermore, in the cell cycle module, the SNHG12 up-regulating expression pattern was verified in the CRC cell lines and tissues, associating it to CRC invasion and distal metastasis. This indicates that SNHG12 may play a critical part in CRC tumorigenesis and progression. Additionally, expression of SNHG12 was found to be down-regulated in CRC cell lines when KLF5 expression was knocked-down by siRNA; and a strong correlation was observed between the expression levels of SNHG12 and KLF5, further alluding to their regulatory relationship. CONCLUSIONS: In conclusion, the network analysis of KLF5 targets indicates that SNHG12 may be a significant lncRNA in CRC.