Cargando…

Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats

BACKGROUND: We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. METHODS: A total of 60 male adult Sprague-Dawley (SD) rats...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Junyi, Ding, Xianfei, Liu, Shaohua, Duan, Xiaoguang, Liang, Huoyan, Sun, Tongwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487801/
https://www.ncbi.nlm.nih.gov/pubmed/32894198
http://dx.doi.org/10.1186/s13287-020-01902-5
Descripción
Sumario:BACKGROUND: We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. METHODS: A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 10(6) ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. RESULTS: The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia–Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. CONCLUSIONS: Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.