Cargando…
DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach
We address the problem of generating novel molecules with desired interaction properties as a multi-objective optimization problem. Interaction binding models are learned from binding data using graph convolution networks (GCNs). Since the experimentally obtained property scores are recognised as ha...
Autores principales: | Khemchandani, Yash, O’Hagan, Stephen, Samanta, Soumitra, Swainston, Neil, Roberts, Timothy J., Bollegala, Danushka, Kell, Douglas B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487898/ https://www.ncbi.nlm.nih.gov/pubmed/33431037 http://dx.doi.org/10.1186/s13321-020-00454-3 |
Ejemplares similares
-
VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder
por: Samanta, Soumitra, et al.
Publicado: (2020) -
Algorithmic Graph Theory, Reinforcement Learning and Game Theory in MD Simulations: From 3D Structures to Topological 2D-Molecular Graphs (2D-MolGraphs) and Vice Versa
por: Bougueroua, Sana, et al.
Publicado: (2023) -
GenGraph: a python module for the simple generation and manipulation of genome graphs
por: Ambler, Jon Mitchell, et al.
Publicado: (2019) -
Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently
por: Kell, Douglas B., et al.
Publicado: (2020) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020)