Cargando…
Semi-supervised method for image texture classification of pituitary tumors via CycleGAN and optimized feature extraction
BACKGROUND: Accurately determining the softness level of pituitary tumors preoperatively by using their image textures can provide a basis for surgical options and prognosis. Existing methods for this problem require manual intervention, which could hinder the efficiency and accuracy considerably. M...
Autores principales: | Zhu, Hong, Fang, Qianhao, Huang, Yihe, Xu, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488038/ https://www.ncbi.nlm.nih.gov/pubmed/32907561 http://dx.doi.org/10.1186/s12911-020-01230-x |
Ejemplares similares
-
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Semi-supervised CycleGAN for domain transformation of chest CT images and its application to opacity classification of diffuse lung diseases
por: Mabu, Shingo, et al.
Publicado: (2021) -
Mol-CycleGAN: a generative model for molecular optimization
por: Maziarka, Łukasz, et al.
Publicado: (2020) -
Study of low-dose PET image recovery using supervised learning with CycleGAN
por: Zhao, Kui, et al.
Publicado: (2020) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021)