Cargando…
MicroRNA-221-3p is related to survival and promotes tumour progression in pancreatic cancer: a comprehensive study on functions and clinicopathological value
BACKGROUND: The microRNA miR-221-3p has previously been found to be an underlying biomarker of pancreatic cancer. However, the mechanisms of miR-221-3p underlying its role in pancreatic cancer pathogenesis, proliferation capability, invasion ability, drug resistance and apoptosis and the clinicopath...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488115/ https://www.ncbi.nlm.nih.gov/pubmed/32943991 http://dx.doi.org/10.1186/s12935-020-01529-9 |
Sumario: | BACKGROUND: The microRNA miR-221-3p has previously been found to be an underlying biomarker of pancreatic cancer. However, the mechanisms of miR-221-3p underlying its role in pancreatic cancer pathogenesis, proliferation capability, invasion ability, drug resistance and apoptosis and the clinicopathological value of miR-221-3p have not been thoroughly studied. METHODS: Based on microarray and miRNA-sequencing data extracted from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), relevant literature, and real-time quantitative PCR (RT-qPCR), we explored clinicopathological features and the expression of miR-221-3p to determine its clinical effect in pancreatic cancer. Proliferation, migration, invasion, apoptosis and in vitro cytotoxicity tests were selected to examine the roles of mir-221-3p. In addition, several miR-221-3p functional analyses were conducted, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein–protein interaction (PPI) network analyses, to examine gene interactions with miR-221-3p. RESULTS: The findings of integrated multi-analysis revealed higher miR-221-3p expression in pancreatic cancer tissues and blood than that in para-carcinoma samples (SMD of miR-221-3p: 1.52; 95% CI 0.96, 2.08). MiR-221-3p is related to survival both in pancreatic cancer and pancreatic ductal adenocarcinoma patients. Cell experiments demonstrated that miR-221-3p promotes pancreatic cancer cell proliferation capability, migration ability, invasion ability, and drug resistance but inhibits apoptosis. Further pancreatic cancer bioinformatics analyses projected 30 genes as the underlying targets of miR-221-3p. The genes were significantly distributed in diverse critical pathways, including microRNAs in cancer, viral carcinogenesis, and the PI3K-Akt signalling pathway. Additionally, PPI indicated four hub genes with threshold values of 5: KIT, CDKN1B, RUNX2, and BCL2L11. Moreover, cell studies showed that miR-221-3p can inhibit these four hub genes expression in pancreatic cancer. CONCLUSIONS: Our research revealed that pancreatic cancer expresses a high-level of miR-221-3p, indicating a potential miR-221-3p role as a prognosis predictor in pancreatic cancer. Moreover, miR-221-3p promotes proliferation capacity, migration ability, invasion ability, and drug resistance but inhibits apoptosis in pancreatic cancer. The function of miR-221-3p in the development of pancreatic cancer may be mediated by the inhibition of hub genes expression. All these results might provide an opportunity to extend the understanding of pancreatic cancer pathogenesis. |
---|