Cargando…

Toe flexor strength is associated with mobility in older adults with pronated and supinated feet but not with neutral feet

BACKGROUND: Older adults are known to have more pronated foot posture and decreased toe flexor strength (TFS), as well as decreased mobility in daily life compared to young adults. Although foot posture is reported to be an influential factor for walking biomechanics in young adults, there is less i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kusagawa, Yuki, Kurihara, Toshiyuki, Imai, Aiko, Maeo, Sumiaki, Sugiyama, Takashi, Kanehisa, Hiroaki, Isaka, Tadao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488436/
https://www.ncbi.nlm.nih.gov/pubmed/32912250
http://dx.doi.org/10.1186/s13047-020-00422-y
Descripción
Sumario:BACKGROUND: Older adults are known to have more pronated foot posture and decreased toe flexor strength (TFS), as well as decreased mobility in daily life compared to young adults. Although foot posture is reported to be an influential factor for walking biomechanics in young adults, there is less information on this subject in older adults. Age-related reduction in TFS is shown to be associated with impairments of functional performance, but it is poorly understood whether foot posture influences the relationships between TFS and functional performances. Therefore, the present study aimed to elucidate this concern by examining older women. METHODS: Seventy community-dwelling older women (76.8 ± 4.4 years) voluntarily participated in this study. Foot posture was evaluated by the 6-item foot posture index (FPI). Based on the FPI score, participants were allocated to pronated, neutral, or supinated group (n = 33, 26, and 11, respectively). TFS was assessed using a toe grip dynamometer in a seated position. Scores of 30-s chair stand, timed up-and-go, 5-m comfortable-speed walking, and static balance tests were determined to evaluate functional performances. Pearson’s correlation coefficients were computed to examine the relationships between TFS and functional performances in each group. RESULTS: TFS positively correlated with comfortable walking speed in the pronated (r = 0.37, p = 0.03) and supinated (r = 0.76, p < 0.001) groups, but not in the neutral group (r = 0.17, p = 0.42). For the two significant relationships, an analysis of covariance showed that there was no significant difference between the pronated and supinated groups in the slopes of the regression lines, suggesting a similar relative contribution of TFS to comfortable walking speed between the two groups. In addition, TFS tended to negatively correlate with timed up-and-go time in the pronated (r = − 0.32, p = 0.07) and supinated (r = − 0.56, p = 0.08) groups, and positively correlate with 30-s chair stand score in the pronated group (r = 0.31, p = 0.08). CONCLUSIONS: The present study indicates that TFS would be associated with mobility, walking performance in particular, in older women with pronated and supinated feet but not with neutral feet.