Cargando…

Carbon nanomaterial-derived lung burden analysis using UV-Vis spectrophotometry and proteinase K digestion

BACKGROUND: The quantification of nanomaterials accumulated in various organs is crucial in studying their toxicity and toxicokinetics. However, some types of nanomaterials, including carbon nanomaterials (CNMs), are difficult to quantify in a biological matrix. Therefore, developing improved method...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dong-Keun, Jeon, Soyeon, Jeong, Jiyoung, Song, Kyung Seuk, Cho, Wan-Seob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488454/
https://www.ncbi.nlm.nih.gov/pubmed/32917232
http://dx.doi.org/10.1186/s12989-020-00377-9
Descripción
Sumario:BACKGROUND: The quantification of nanomaterials accumulated in various organs is crucial in studying their toxicity and toxicokinetics. However, some types of nanomaterials, including carbon nanomaterials (CNMs), are difficult to quantify in a biological matrix. Therefore, developing improved methodologies for quantification of CNMs in vital organs is instrumental in their continued modification and application. RESULTS: In this study, carbon black, nanodiamond, multi-walled carbon nanotube, carbon nanofiber, and graphene nanoplatelet were assembled and used as a panel of CNMs. All CNMs showed significant absorbance at 750 nm, while their bio-components showed minimal absorbance at this wavelength. Quantification of CNMs using their absorbance at 750 nm was shown to have more than 94% accuracy in all of the studied materials. Incubating proteinase K (PK) for 2 days with a mixture of lung tissue homogenates and CNMs showed an average recovery rate over 90%. The utility of this method was confirmed in a murine pharyngeal aspiration model using CNMs at 30 μg/mouse. CONCLUSIONS: We developed an improved lung burden assay for CNMs with an accuracy > 94% and a recovery rate > 90% using PK digestion and UV-Vis spectrophotometry. This method can be applied to any nanomaterial with sufficient absorbance in the near-infrared band and can differentiate nanomaterials from elements in the body, as well as the soluble fraction of the nanomaterial. Furthermore, a combination of PK digestion and other instrumental analysis specific to the nanomaterial can be applied to organ burden analysis.