Cargando…

Functional variation in phyllogen, a phyllody‐inducing phytoplasma effector family, attributable to a single amino acid polymorphism

Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrate...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwabuchi, Nozomu, Kitazawa, Yugo, Maejima, Kensaku, Koinuma, Hiroaki, Miyazaki, Akio, Matsumoto, Ouki, Suzuki, Takumi, Nijo, Takamichi, Oshima, Kenro, Namba, Shigetou, Yamaji, Yasuyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488466/
https://www.ncbi.nlm.nih.gov/pubmed/32813310
http://dx.doi.org/10.1111/mpp.12981
Descripción
Sumario:Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR‐based approach to identify 25 phytoplasma phyllogens related to nine “Candidatus Phytoplasma” species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl‐A, ‐B, ‐C, and ‐D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl‐A, ‐C, and ‐D groups induced phyllody, the phyl‐B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl‐B group phyllogens prevented interactions between phyllogens and A‐ and E‐class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.