Cargando…
Intracellular Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii DL1
BACKGROUND: To respond and adapt to environmental challenges, prokaryotes regulate cellular processes rapidly and reversibly through protein phosphorylation and dephosphorylation. This study investigates the intracellular proteome and Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488673/ https://www.ncbi.nlm.nih.gov/pubmed/32928109 http://dx.doi.org/10.1186/s12866-020-01944-y |
Sumario: | BACKGROUND: To respond and adapt to environmental challenges, prokaryotes regulate cellular processes rapidly and reversibly through protein phosphorylation and dephosphorylation. This study investigates the intracellular proteome and Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii. Intracellular proteins from planktonic cells of S. gordonii DL1 were extracted and subjected to 2D-gel electrophoresis. Proteins in general were visualized using Coomassie Brilliant Blue and T-Rex staining. Phosphorylated proteins were visualized with Pro-Q Diamond Phosphoprotein Gel Stain. Proteins were identified by LC-MS/MS and sequence analysis. RESULTS: In total, sixty-one intracellular proteins were identified in S. gordonii DL1, many of which occurred at multiple isoelectric points. Nineteen of these proteins were present as one or more Ser/Thr/Tyr phosphorylated form. The identified phosphoproteins turned out to be involved in a variety of cellular processes. CONCLUSION: Nineteen phosphoproteins involved in various cellular functions were identified in S. gordonii. This is the first time the global intracellular Ser/Thr/Tyr phosphorylation profile has been analysed in an oral streptococcus. Comparison with phosphoproteomes of other species from previous studies showed many similarities. Proteins that are consistently found in a phosphorylated state across several species and growth conditions may represent a core phosphoproteome profile shared by many bacteria. |
---|