Cargando…
As if sand were stone. New concepts and metrics to probe the ground on which to build trustable AI
BACKGROUND: We focus on the importance of interpreting the quality of the labeling used as the input of predictive models to understand the reliability of their output in support of human decision-making, especially in critical domains, such as medicine. METHODS: Accordingly, we propose a framework...
Autores principales: | Cabitza, Federico, Campagner, Andrea, Sconfienza, Luca Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488864/ https://www.ncbi.nlm.nih.gov/pubmed/32917183 http://dx.doi.org/10.1186/s12911-020-01224-9 |
Ejemplares similares
-
Studying human-AI collaboration protocols: the case of the Kasparov’s law in radiological double reading
por: Cabitza, Federico, et al.
Publicado: (2021) -
Bridging the “last mile” gap between AI implementation and operation: “data awareness” that matters
por: Cabitza, Federico, et al.
Publicado: (2020) -
Secure system design and trustable computing
por: Chang, Chip-Hong, et al.
Publicado: (2016) -
Three-Way Decision for Handling Uncertainty in Machine Learning: A Narrative Review
por: Campagner, Andrea, et al.
Publicado: (2020) -
External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
por: Campagner, Andrea, et al.
Publicado: (2021)