Cargando…
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
OBJECTIVE: We implement 2 different multitask learning (MTL) techniques, hard parameter sharing and cross-stitch, to train a word-level convolutional neural network (CNN) specifically designed for automatic extraction of cancer data from unstructured text in pathology reports. We show the importance...
Autores principales: | Alawad, Mohammed, Gao, Shang, Qiu, John X, Yoon, Hong Jun, Blair Christian, J, Penberthy, Lynne, Mumphrey, Brent, Wu, Xiao-Cheng, Coyle, Linda, Tourassi, Georgia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489089/ https://www.ncbi.nlm.nih.gov/pubmed/31710668 http://dx.doi.org/10.1093/jamia/ocz153 |
Ejemplares similares
-
Using case-level context to classify cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2020) -
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022) -
Deep active learning for classifying cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2021) -
Hierarchical attention networks for information extraction from cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2018)