Cargando…
Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells
Ion exchange membranes are widely used in fuel cells to physically separate two electrodes and functionally conduct charge-carrier ions, such as anion exchange membranes and cation exchange membranes. The physiochemical characteristics of ion exchange membranes can affect the ion transport processes...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489145/ https://www.ncbi.nlm.nih.gov/pubmed/33110909 http://dx.doi.org/10.3389/fchem.2020.00765 |
_version_ | 1783581824567476224 |
---|---|
author | Su, Xiangyu Pan, Zhefei An, Liang |
author_facet | Su, Xiangyu Pan, Zhefei An, Liang |
author_sort | Su, Xiangyu |
collection | PubMed |
description | Ion exchange membranes are widely used in fuel cells to physically separate two electrodes and functionally conduct charge-carrier ions, such as anion exchange membranes and cation exchange membranes. The physiochemical characteristics of ion exchange membranes can affect the ion transport processes through the membrane and thus the fuel cell performance. This work aims to understand the ion transport characteristics through different types of ion exchange membrane in direct formate fuel cells. A one-dimensional model is developed and applied to predict the polarization curves, concentration distributions of reactants/products, distributions of three potentials (electric potential, electrolyte potential, and electrode potential) and the local current density in direct formate fuel cells. The effects of the membrane type and membrane thickness on the ion transport process and thus fuel cell performance are numerically investigated. In addition, particular attention is paid to the effect of the anion-cation conducting ratio of the membrane, i.e., the ratio of the anionic current to the cationic current through the membrane, on the fuel cell performance. The modeling results show that, when using an anion exchange membrane, both formate and hydroxide concentrations in the anode catalyst layer are higher than those achieved by using a cation exchange membrane. Although a thicker membrane better alleviates the fuel crossover phenomenon, increasing the membrane thickness will increase the ohmic loss, due to the enlarged ion-transport distance through the membrane. It is further found that increasing the anion-cation conducting ratio will upgrade the fuel cell performance via three mechanisms: (i) providing a higher ionic conductivity and thus reducing the ohmic loss; (ii) enabling more OH(−) ions to transport from the cathode to the anode and thus increasing the OH(−) concentration in the anode catalyst layer; and (iii) accumulating more cations in the anode and thus enhancing the formate-ion migration to the anode catalyst layer for the anodic reaction. |
format | Online Article Text |
id | pubmed-7489145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74891452020-10-26 Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells Su, Xiangyu Pan, Zhefei An, Liang Front Chem Chemistry Ion exchange membranes are widely used in fuel cells to physically separate two electrodes and functionally conduct charge-carrier ions, such as anion exchange membranes and cation exchange membranes. The physiochemical characteristics of ion exchange membranes can affect the ion transport processes through the membrane and thus the fuel cell performance. This work aims to understand the ion transport characteristics through different types of ion exchange membrane in direct formate fuel cells. A one-dimensional model is developed and applied to predict the polarization curves, concentration distributions of reactants/products, distributions of three potentials (electric potential, electrolyte potential, and electrode potential) and the local current density in direct formate fuel cells. The effects of the membrane type and membrane thickness on the ion transport process and thus fuel cell performance are numerically investigated. In addition, particular attention is paid to the effect of the anion-cation conducting ratio of the membrane, i.e., the ratio of the anionic current to the cationic current through the membrane, on the fuel cell performance. The modeling results show that, when using an anion exchange membrane, both formate and hydroxide concentrations in the anode catalyst layer are higher than those achieved by using a cation exchange membrane. Although a thicker membrane better alleviates the fuel crossover phenomenon, increasing the membrane thickness will increase the ohmic loss, due to the enlarged ion-transport distance through the membrane. It is further found that increasing the anion-cation conducting ratio will upgrade the fuel cell performance via three mechanisms: (i) providing a higher ionic conductivity and thus reducing the ohmic loss; (ii) enabling more OH(−) ions to transport from the cathode to the anode and thus increasing the OH(−) concentration in the anode catalyst layer; and (iii) accumulating more cations in the anode and thus enhancing the formate-ion migration to the anode catalyst layer for the anodic reaction. Frontiers Media S.A. 2020-08-31 /pmc/articles/PMC7489145/ /pubmed/33110909 http://dx.doi.org/10.3389/fchem.2020.00765 Text en Copyright © 2020 Su, Pan and An. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Su, Xiangyu Pan, Zhefei An, Liang Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title | Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title_full | Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title_fullStr | Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title_full_unstemmed | Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title_short | Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells |
title_sort | ion transport characteristics in membranes for direct formate fuel cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489145/ https://www.ncbi.nlm.nih.gov/pubmed/33110909 http://dx.doi.org/10.3389/fchem.2020.00765 |
work_keys_str_mv | AT suxiangyu iontransportcharacteristicsinmembranesfordirectformatefuelcells AT panzhefei iontransportcharacteristicsinmembranesfordirectformatefuelcells AT anliang iontransportcharacteristicsinmembranesfordirectformatefuelcells |