Cargando…

Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality

The deterioration of field potential (FP) recording quality and yield by in vivo multielectrode arrays (MEA) within days to weeks of implantation severely limits progress in basic and applied brain research. The prevailing hypothesis is that implantation of MEA platforms initiate and perpetuate infl...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Shun-Ho, Shmoel, Nava, Jankowski, Maciej M., Erez, Hadas, Sharon, Aviv, Abu-Salah, Wesal, Nelken, Israel, Weiss, Aryeh, Spira, Micha E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489236/
https://www.ncbi.nlm.nih.gov/pubmed/32982683
http://dx.doi.org/10.3389/fnins.2020.00926
_version_ 1783581843930480640
author Huang, Shun-Ho
Shmoel, Nava
Jankowski, Maciej M.
Erez, Hadas
Sharon, Aviv
Abu-Salah, Wesal
Nelken, Israel
Weiss, Aryeh
Spira, Micha E.
author_facet Huang, Shun-Ho
Shmoel, Nava
Jankowski, Maciej M.
Erez, Hadas
Sharon, Aviv
Abu-Salah, Wesal
Nelken, Israel
Weiss, Aryeh
Spira, Micha E.
author_sort Huang, Shun-Ho
collection PubMed
description The deterioration of field potential (FP) recording quality and yield by in vivo multielectrode arrays (MEA) within days to weeks of implantation severely limits progress in basic and applied brain research. The prevailing hypothesis is that implantation of MEA platforms initiate and perpetuate inflammatory processes which culminate in the formation of scar tissue (the foreign body response, FBR) around the implant. The FBR leads to progressive degradation of the recording qualities by displacing neurons away from the electrode surfaces, increasing the resistance between neurons (current source) and the sensing pads and by reducing the neurons’ excitable membrane properties and functional synaptic connectivity through the release of pro-inflammatory cytokines. Meticulous attempts to causally relate the cellular composition, cell density, and electrical properties of the FBR have failed to unequivocally correlate the deterioration of recording quality with the histological severity of the FBR. Based on confocal and electron microscope analysis of thin sections of polyimide based MEA implants along with the surrounding brain tissue at different points in time after implantation, we propose that abrupt FP amplitude attenuation occurs at the implant/brain-parenchyma junction as a result of high seal resistance insulation formed by adhering microglia to the implant surfaces. In contrast to the prevailing hypothesis, that FP decrease occurs across the encapsulating scar of the implanted MEA, this mechanism potentially explains why no correlations have been found between the dimensions and density of the FBR and the recording quality. Recognizing that the seal resistance formed by adhering-microglia to the implant constitutes a downstream element undermining extracellular FP recordings, suggests that approaches to mitigate the formation of the insulating glial could lead to improved recording quality and yield.
format Online
Article
Text
id pubmed-7489236
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-74892362020-09-25 Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality Huang, Shun-Ho Shmoel, Nava Jankowski, Maciej M. Erez, Hadas Sharon, Aviv Abu-Salah, Wesal Nelken, Israel Weiss, Aryeh Spira, Micha E. Front Neurosci Neuroscience The deterioration of field potential (FP) recording quality and yield by in vivo multielectrode arrays (MEA) within days to weeks of implantation severely limits progress in basic and applied brain research. The prevailing hypothesis is that implantation of MEA platforms initiate and perpetuate inflammatory processes which culminate in the formation of scar tissue (the foreign body response, FBR) around the implant. The FBR leads to progressive degradation of the recording qualities by displacing neurons away from the electrode surfaces, increasing the resistance between neurons (current source) and the sensing pads and by reducing the neurons’ excitable membrane properties and functional synaptic connectivity through the release of pro-inflammatory cytokines. Meticulous attempts to causally relate the cellular composition, cell density, and electrical properties of the FBR have failed to unequivocally correlate the deterioration of recording quality with the histological severity of the FBR. Based on confocal and electron microscope analysis of thin sections of polyimide based MEA implants along with the surrounding brain tissue at different points in time after implantation, we propose that abrupt FP amplitude attenuation occurs at the implant/brain-parenchyma junction as a result of high seal resistance insulation formed by adhering microglia to the implant surfaces. In contrast to the prevailing hypothesis, that FP decrease occurs across the encapsulating scar of the implanted MEA, this mechanism potentially explains why no correlations have been found between the dimensions and density of the FBR and the recording quality. Recognizing that the seal resistance formed by adhering-microglia to the implant constitutes a downstream element undermining extracellular FP recordings, suggests that approaches to mitigate the formation of the insulating glial could lead to improved recording quality and yield. Frontiers Media S.A. 2020-08-31 /pmc/articles/PMC7489236/ /pubmed/32982683 http://dx.doi.org/10.3389/fnins.2020.00926 Text en Copyright © 2020 Huang, Shmoel, Jankowski, Erez, Sharon, Abu-Salah, Nelken, Weiss and Spira. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Huang, Shun-Ho
Shmoel, Nava
Jankowski, Maciej M.
Erez, Hadas
Sharon, Aviv
Abu-Salah, Wesal
Nelken, Israel
Weiss, Aryeh
Spira, Micha E.
Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title_full Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title_fullStr Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title_full_unstemmed Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title_short Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality
title_sort immunohistological and ultrastructural study of the inflammatory response to perforated polyimide cortical implants: mechanisms underlying deterioration of electrophysiological recording quality
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489236/
https://www.ncbi.nlm.nih.gov/pubmed/32982683
http://dx.doi.org/10.3389/fnins.2020.00926
work_keys_str_mv AT huangshunho immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT shmoelnava immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT jankowskimaciejm immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT erezhadas immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT sharonaviv immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT abusalahwesal immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT nelkenisrael immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT weissaryeh immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality
AT spiramichae immunohistologicalandultrastructuralstudyoftheinflammatoryresponsetoperforatedpolyimidecorticalimplantsmechanismsunderlyingdeteriorationofelectrophysiologicalrecordingquality