Cargando…
Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis
IMPORTANCE: Deep learning, a family of machine learning models that use artificial neural networks, has achieved great success at predicting outcomes in nonmedical domains. OBJECTIVE: To examine whether deep learning recurrent neural network (RNN) models that use raw longitudinal data extracted dire...
Autores principales: | Ioannou, George N., Tang, Weijing, Beste, Lauren A., Tincopa, Monica A., Su, Grace L., Van, Tony, Tapper, Elliot B., Singal, Amit G., Zhu, Ji, Waljee, Akbar K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489819/ https://www.ncbi.nlm.nih.gov/pubmed/32870314 http://dx.doi.org/10.1001/jamanetworkopen.2020.15626 |
Ejemplares similares
-
Adapted time-varying covariates Cox model for predicting future cirrhosis development performs well in a large hepatitis C cohort
por: Beste, Lauren A., et al.
Publicado: (2021) -
Opioid and benzodiazepine prescription among patients with cirrhosis compared to other forms of chronic disease
por: Konerman, Monica A, et al.
Publicado: (2019) -
Eliciting patient views on the allocation of limited healthcare resources: a deliberation on hepatitis C treatment in the Veterans Health Administration
por: Waljee, Akbar K., et al.
Publicado: (2020) -
Machine learning models to predict disease progression among veterans with hepatitis C virus
por: Konerman, Monica A., et al.
Publicado: (2019) -
Animal Naming Test Is Associated With Poor Patient-Reported Outcomes and Frailty in People With and Without Cirrhosis: A Prospective Cohort Study
por: Tapper, Elliot B., et al.
Publicado: (2022)