Cargando…
Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobiliz...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490068/ https://www.ncbi.nlm.nih.gov/pubmed/32982218 http://dx.doi.org/10.2147/IJN.S259028 |
_version_ | 1783581973695954944 |
---|---|
author | Wu, Ruiqi Gao, Guanying Xu, Yan |
author_facet | Wu, Ruiqi Gao, Guanying Xu, Yan |
author_sort | Wu, Ruiqi |
collection | PubMed |
description | PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. METHODS: The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. RESULTS: Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner’s trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. CONCLUSION: PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration. |
format | Online Article Text |
id | pubmed-7490068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-74900682020-09-24 Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model Wu, Ruiqi Gao, Guanying Xu, Yan Int J Nanomedicine Original Research PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. METHODS: The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. RESULTS: Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner’s trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. CONCLUSION: PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration. Dove 2020-09-07 /pmc/articles/PMC7490068/ /pubmed/32982218 http://dx.doi.org/10.2147/IJN.S259028 Text en © 2020 Wu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Wu, Ruiqi Gao, Guanying Xu, Yan Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title | Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title_full | Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title_fullStr | Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title_full_unstemmed | Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title_short | Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model |
title_sort | electrospun fibers immobilized with bmp-2 mediated by polydopamine combined with autogenous tendon to repair developmental dysplasia of the hip in a porcine model |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490068/ https://www.ncbi.nlm.nih.gov/pubmed/32982218 http://dx.doi.org/10.2147/IJN.S259028 |
work_keys_str_mv | AT wuruiqi electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel AT gaoguanying electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel AT xuyan electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel |