Cargando…

Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model

PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobiliz...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ruiqi, Gao, Guanying, Xu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490068/
https://www.ncbi.nlm.nih.gov/pubmed/32982218
http://dx.doi.org/10.2147/IJN.S259028
_version_ 1783581973695954944
author Wu, Ruiqi
Gao, Guanying
Xu, Yan
author_facet Wu, Ruiqi
Gao, Guanying
Xu, Yan
author_sort Wu, Ruiqi
collection PubMed
description PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. METHODS: The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. RESULTS: Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner’s trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. CONCLUSION: PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration.
format Online
Article
Text
id pubmed-7490068
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-74900682020-09-24 Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model Wu, Ruiqi Gao, Guanying Xu, Yan Int J Nanomedicine Original Research PURPOSE: Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. METHODS: The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. RESULTS: Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner’s trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. CONCLUSION: PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration. Dove 2020-09-07 /pmc/articles/PMC7490068/ /pubmed/32982218 http://dx.doi.org/10.2147/IJN.S259028 Text en © 2020 Wu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Wu, Ruiqi
Gao, Guanying
Xu, Yan
Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title_full Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title_fullStr Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title_full_unstemmed Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title_short Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model
title_sort electrospun fibers immobilized with bmp-2 mediated by polydopamine combined with autogenous tendon to repair developmental dysplasia of the hip in a porcine model
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490068/
https://www.ncbi.nlm.nih.gov/pubmed/32982218
http://dx.doi.org/10.2147/IJN.S259028
work_keys_str_mv AT wuruiqi electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel
AT gaoguanying electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel
AT xuyan electrospunfibersimmobilizedwithbmp2mediatedbypolydopaminecombinedwithautogenoustendontorepairdevelopmentaldysplasiaofthehipinaporcinemodel